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ABSTRACT
This paper presents a probabilistic model that can be used to simulate the process of fatigue damage
accumulation and failure in metals.  The underlying concept in the model is to simulate the material behavior
with a series of mechanical springs with randomized behavior.  Depending upon the applied stress level,
which is resisted by these springs, a certain number of springs are expected to rupture with every stress
application.  The pattern at which rupture occurs among the springs is assumed to be random. The behavior of
each spring is modeled with a nonlinear stress-deformation curve, which is also random.  Damage which
occurs after each stress cycle is simulated by the number of springs which have ruptured upon the stress
application; and the damage accumulation is modeled by the total number of springs that have ruptured during
the entire stress application cycle.  When a sufficiently large number of springs rupture, the entire system is
considered to have failed.  This constitutes fatigue failure.  The model is demonstrated by simulating the
fatigue failure of simple metal specimens, and it results in a Wöhler-like S-N curve.

1 INTRODUCTION
Crack formation in materials due to repeated load application is a complex phenomenon. The
material behavior, the macrostructure arrangement in the material, applied stress level, size of the
component, existence of prior cracks are among factors that are known to affect the fatigue
process.  Uncertainties associated with these parameters are the main source of large scatter often
observed in fatigue failure behavior of materials.  Although there have been efforts in the past to
develop models for describing fatigue behavior (e.g., Jackel [1] and Martin. et al [2]), experimental
investigations have remained as the only reliable method to establish fatigue failure behavior in
materials.  Previous mechanical models developed to explain the interlinked set of phenomena
needed to describe fatigue failure have been unsatisfactory to a greater or lesser degree because
these models simulated only one or two of the many gross macroscopic aspects of metal fatigue.
The evolution of fatigue failure is assumed to proceed through four stages prior to fracture or
rupture (see Fig. 1).  These are: (1) the inception of isolated microscopic zones of plasticity; (2) the
"organization" of the microscopic zones of plasticity into macroscopic plastic regions; (3) the
initiation of cracks; and (4) complete separation or rupture.  Stage 1 occurs at very low stress
levels and, if stresses remain low, fatigue failure in metals with a definite endurance limit does not
occur.  At stress levels higher than those needed to initiate microscopic yielding, stage 2 occurs
(curve marked P in Fig. 2).   If stresses are raised to still higher levels, then stage 3, or crack
initiation occurs (curve F in Fig. 2).  This curve is sometimes called “French’s line of damage.”
When the stresses are raised to even higher levels, the cracks, which first appeared in stage 3
propagate and eventually cause rupture as illustrated by the uppermost curve in Fig. 2.  This last
curve is what is known as the S-N (or Wöhler) curve in fatigue behavior of metals. Guralnick [3]
describes fatigue phenomena based on incremental collapse of a simple portal frame composed of
an elastic perfectly plastic material.  This model, at best, can only simulate the first two stages of
the progression leading to fatigue failure depicted in Fig. 1. To overcome this shortcoming and to
develop a model to simulate the fatigue behavior through the S-N curve, a model must be capable
of describing the non-linear behavior of the material as well as the many sources of uncertainties
that result in the large scatter observed in the S-N behavior.  This means that the model, more
appropriately, requires a probabilistic formulation.  Accordingly, Guralnick and Mohammadi [4]



developed a simple model to demonstrate the capability of probabilistic formulations in providing
a pathway through all four stages culminating in rupture or fatigue.  The model consisted of only a
limited number of random variables.  It was developed as an extension of the model originally
proposed by Jenkin [5] to simulate the elastic-plastic mechanical behavior of materials. This model
is based on the behavior of a system of parallel springs, which undergo a random stress cycle.
Failures among the springs occur at random and can be used as a means to simulate fatigue
damage and fatigue behavior.  When a sufficient number of springs rupture, fatigue failure is
assumed to have occurred.  The model used only a small number of random variables and was
intended as an initial step to verify its capability in simulating fatigue damage and failure behavior.
This paper further expands the model proposed by Guralnick and Mohammadi by enhancing the
random characteristics of the material behavior.

2 DESCRIPTION OF THE MODEL
Figure 3 illustrates the mechanical model used in this study to simulate fatigue behavior.  The
model consists of m parallel springs, which resist the applied stress F.  Each spring is a non-linear
element with the stress-deformation behavior curve shown in Fig. 4.  Although the springs are
considered to be identical, their behavior will differ from one another if one defines one or more of
the spring parameters as random variables. The uncertainty in the spring behavior can specifically
be considered from two distinct sources.  One is related to the randomness in the variables that
describe the stress-deformation curve in the elastic region.  The other is related to those variables
that describe the stress-deformation in the post-yield region and, specifically, in the stress-
hardening portion of the curve as depicted by variables u'y and uL and the slope of the curve in the
post-yield region (ke).  In the current formulation of the model, in addition to the spring behavior
curve, the applied stress (F), the number of springs (m) making up the model and the percentage of
ruptured springs (NL) that constitute fatigue failure are also treated as random variables. All of the
random variables in the model are described with their respective means and standard deviations
and a prescribed distribution model (e.g., normal).

3 BASIC FORMULATION
The applied stress (F) is distributed evenly among the m springs (see Fig. 3); and as such, the
stress in any spring i is mFi /=σ .  Rupture in a spring will occur when the stress σi exceeds the

resistance RL (see Fig. 4).  After the first stress cycle, failure probability  p1 in any one spring is

)(1 iLRPp σ≤= (1)

let Z1 = (RL − σi), then )0( 1 ≤= ZPpi .

From Fig. 4, RL  and consequently Z1 can be written as

)'( yLeyyL uukRRRR −+=∆+= (2)

mFuukRZ yLey /)'(1 −−+= (3)

where )'/(' kkkkke += .  Parameters F, Ry, ke, uL and u'y are all treated as random variables.

Using the first order reliability method (FORM), the probability term in Eq. 1 can be written in the



following form )/( 111 SZp −Φ= in which 1Z and S1 are the mean and standard deviation of Z1,

respectively, and Φ(⋅) represents the normal probability distribution function.  They can be
estimated using the first order approximation in terms of the mean and standard deviations of all
random variables describing the spring behavior as depicted in Fig. 4.  Upon the application of the
first stress cycle, the estimated number of springs that survive the load is (1!p1)m.  After the
second cycle, the probability of failure of a given spring is p2, where

)/()0( 2222 SZZPp −Φ=≤=  and ).1(/)'( 12 pmFuukRZ yLey −−−+= Again

2Z and S2 are the mean and standard deviation of Z2, respectively.  The number of springs that

survive after the second stress cycle is (1!p1)(1!p2)m.  In general, after the nth stress cycle, if pn is
the failure probability of a given spring, then,

)/()0( nnnn SZZPp −Φ=≤= (4)
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Again nZ and Sn are the mean and standard deviation of Zn, respectively.  Note that the product

(1!p1)(1!p2)... (1!pn)m is the number of springs surviving after the nth stress cycle.  With the first
order approximation, general equations for the mean and standard deviation of Zn are
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in which a bar on each symbol indicates the mean value of the respective random variable;
whereas, the term such as SX indicates the standard deviation of a random variable X.

Fig. 1 Stages in progression leading to fatigue Fig. 2 Conventional representation of fatigue
fracture or rupture process



3.1 Fatigue Failure
Fatigue failure occurs when a significantly large number of springs have failed.  Depending on the
type of material, this number of failures is also random. In a given case of applied stress, a random
value for NL is selected based on the mean and standard deviation of NL.

3.2 Solution Process
Equations 4 and 5 can be solved in a step-by-step manner starting with n=1 and continuing the
computations until system failure occurs.  Before each computation run, the mean and standard
deviation of F as well as those of the other parameters describing the spring behavior are selected.
A random number is then generated for the required percentage of ruptured springs, that
constitutes fatigue failure (i.e., NL) and the total number of springs that make up the entire model
(i.e, the parameter m).  The computation of the terms pn is then achieved using Equations 4-7 after
each stress application.  Upon each stress cycle, the percentage of ruptured springs is computed
and compared against NL to determine whether fatigue failure has occurred.  Once the percentage
of ruptured springs is equal to or exceeds NL, then the cycle number corresponding to this stress
application is recorded.  This is the number of stress cycles causing failure.

Fig. 3 Model schematics Fig. 4 Response of a single element of model

3.3 Determination of Spring Parameters
Spring parameters depicted in Fig. 4 can be determined from simple tests of materials.  The
standard deviations of individual parameters are the measures of uncertainty in materials behavior
and can be estimated from published data on variations observed in metal yield and ultimate strain
values.  The stress hardening behavior shown in Fig. 4 appears to play a crucial role in the overall
behavior of the material in producing random fatigue failure results (as described later).  This
stress-hardening behavior can also be investigated in a limited number of simple tension tests.  The
limited number of tests needed to calibrate the spring behavior would require, by far, much less
labor and cost compared with the numerous tests needed to investigate the fatigue failure behavior
using conventional laboratory investigations. As is evident from the formulation, the parameter m
plays an important role in the model and in the simulation process.  Generally, m will be
proportional to the inverse of the probability of failure pn.  One can begin with a large m as a
starting value and revise it later if such revision becomes necessary.



4 NUMERICAL ILLUSTRATION
The following example is intended for illustration purposes only.  In a given material, the
estimated value for m is selected as 10,000. However, this will be subject to a 5% coefficient of
variation, which is incorporated in the analysis.  Twelve random values for m are selected using a
normal distribution, a mean of 10,000 and a coefficient of variation of 0.05.  These random values
range from 9,545 to 10,640.  The mean value of the parameter NL is selected as 25 percent with a
coefficient of variation equal to 0.20.  Several random numbers for this parameter are also
generated using a normal distribution.  The random values range from 20.45 to 31.40 percent.  The
selection of m and NL as random numbers further increases the variations to be expected in typical
fatigue failures.  The applied stress F, as well as all parameters describing the behavior of the
spring are also treated as random variables.  In this example, their corresponding means and
coefficients of variation are summarized in Table 1.  Within each stress value (say 9000 psi), the
results of the total number of cycles to failure are random and show a rather wide range.  Table 2
summarizes the total number of stress cycles obtained for various stress values applied to the
system.  Figure 5, shows the results in graphic form using a semi-log scale.  This figure clearly
depicts the scatter in results, which is a distinct characteristic of the usual S-N (or Wöhler-type)
curve.

Table 2 Number of Stress Cycles to Failure

Table 1 Variability in Stress and Resistance
Behavior

Variable Unit Mean Coefficient
of Variation

F psi 3,000-
9,000

0.20

Ry psi 1.00 0.20
RL psi 2.00 0.20
uy inches 0.067 0.05
u'y inches 0.183 0.05
uL inches 0.25 0.05
ke Lbs/in3 15 0.20

Applied
Stress (psi)

Range for Number of
Cycles to Failure

9,000 21 - 56
8,500 33 - 89
8,000 55 - 145
7,500 92 - 245
7,000 162 - 425
6,500 294 - 763
6,000 555 - 1,419
5,500 1,086 - 2,681
5,000 2,197 - 5,250
4,500 5,597 - 10,569
4,000 11,527 - 21,851
3,500 22,091 - 46,340
3,000 Over 65,000

5 SENSITIVITY OF RESULTS TO VARIATION IN MATERIAL PROPERTIES
An important feature of the model presented herein is its ability to portray the scatter in fatigue
life, which is often observed in experiments with real metals.  To further explore the main sources
of this scatter, the influence of the variation in model parameters on the final outcome for fatigue
life was investigated.  Three sources of parameter variations were evaluated.  These were: (1)
variation in the applied stress and uncertainty in the percentage of ruptured springs (i.e., parameter
NL) needed to reach fatigue failure; (2) variation in the parameters describing the elastic portion of
the spring behavior curve; and (3) variation in the parameters describing the post-yield region (i.e.,
stress hardening region and the onset of plastic behavior) in the spring behavior curve. Figure 6
presents the significance of variability in the parameters describing the post yield region of the
spring behavior curve compared with the variability in parameters describing the elastic region of
the curve.  As the variability in the elastic parameters increases, the change in the variability in



fatigue life is only marginal.  However, when the variability in post-yield parameters increases,
there is a dramatic change in the variation obtained for fatigue life.  These results are consistent
with actual fatigue behavior in metals.  As explained earlier (see Fig. 1), the inception of fatigue
damage starts by the formation of microscopic zones of plasticity and the organization of these
zones into macroscopic plastic region which lead to crack initiation.  To a great extent the scatter
inherent in fatigue life is affected by randomness in the plastic regions formation which is
predominately affected by the material non-linearity.

   Fig. 5 S-N Curve for the Example Problem Fig. 6 Effect of Parameter Uncertainty on
Variation in Fatigue Life

6 DISCUSSION AND CONCLUSIONS
The model presented in this paper can be used in developing the S-N relationship with
characteristics similar to those associated with curves obtained in experiments with real metals.  To
apply the model to a broader fatigue study, several additional developments will be necessary.
Specifically, one needs to develop an approach that can be used in calibrating the parameters
describing the spring behavior for a given material.  We believe that this can be achieved with a
limited number of simple laboratory tests on material behavior and calibration of the spring model
parameters with a few cyclic load test results (as described earlier).  In conclusion: (1) A model
made of nonlinear parallel springs can be used to simulate fatigue failure in metals; (2) The results
from simulating fatigue behavior from this model show that most of the variation in fatigue life is
inherent in the stress hardening and plastic behavior of the springs.
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