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Abstract
 Several measures of the characteristic material length parameter have been 
suggested for solids weakened by presence of a fractal crack. The characteristic length 
parameter is discussed at various scale levels, beginning with macro-level and ending 
with a nano-level. Physical interpretation and the numerical estimates of these parameters 
are provided at all levels. 

 The fractal dimension of the crack D is allowed to vary from 1 (smooth crack 
limit) to 2, when the crack becomes a plane filling entity. Significant variations from the 
classic solution are demonstrated as the singularity exponent α, entering in the near-tip 
stress field, r-α, sweeps the range (0, 2

1 ). The well-known concepts of the stress intensity 
factor and the Barenblatt cohesive modulus, which is a measure of material toughness, 
have been re-defined to accommodate the fractal view of fracture. Specifically, the 
cohesion modulus, in addition to its dependence on the distribution of the cohesion 
forces, is shown now to be a function of the “degree of fractality”, reflected by the fractal 
dimension D, or by the fractal roughness parameter, H. For most fractal cracks, when D 
is not too close to 2, the characteristic length is chosen as the length of the cohesive zone, 
R. Above a certain threshold value of D, the root radius of the equivalent blunted crack 
,ρ, is suggested as the primary characteristic length parameter. The equivalent blunted 
crack is selected by use of the Neuber stress magnification concept and the classic 
fracture mechanics equations for a crack with a finite root radius. The sequence of the 
meso-scale and the nano-scale material length parameters is then defined. It turns out that 
at each scale level there exists a different length constant, which determines the 
neighborhood “landscape”, beginning with a critical crack opening displacement, quasi-
static crack growth step, Wnuk’s final stretch and ending with a lattice constant or an 
inter-atomic distance.  

The fractal cohesive crack model used here is based on a simplifying assumption, 
according to which the original problem is approximated by considerations of a smooth 
crack embedded in the stress field generated by a fractal crack. As the degree of fractality 
increases, the characteristic material length constants are shown to rapidly grow to the 
levels around three orders of magnitude higher than those predicted for the classic case. 
Such phenomenon may be helpful in explaining an unusual size-sensitivity of fracture 
processes in materials with cementitious bonding such as concrete and certain types of 
ceramics, where fractal cracks are commonly observed. It is an experimentally confirmed 
fact that in these materials the size of the process zone, which frequently is identified 
with the primary characteristic length, and the size of the end zone as modeled by the 
cohesive crack representation, frequently approach the size of the entire specimen used in 
a typical laboratory test.  
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1. MATHEMATICAL PRELIMINARIES 

 
In order to investigate the size effects associated with imperfect materials weakened 

by voids and crack-like defects, we need to establish a characteristic length defined by 
the material microstructure and geometry of the defect. A certain length parameter, R, is 
embedded in all cohesive crack models. Equilibrium between the restraining tractions 
S(X) =S0G(X) applied over the end zone itself, is determined by the finiteness condition 

 
0)()(),( =+= SKKSK cohItot σσ                              (1.1) 

 
With the pressure σ applied to the crack surface, X a≤ , and the pressure p = σ – S(X) 

applied over the end zones, a X a R≤ ≤ + , equation (1.1) reads 
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When the nondimensional loading parameter πσ/2S0 is denoted by Q, the condition (1.2) 
can be re-written as 
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Here, the cohesive stresses are given by the Wnuk-Legat distribution law, cf. [2], 
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The material parameters n and ω are subject to experimental determination at the 
mesomechanical level. If the pertinent variables are nondimensionalized as follows,  
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Equation (1.5) reads 
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In what follows we shall restrict the considerations to the case of R<<a, or m 1. This 
restriction is pertinent to the “small scale yielding” (ssy) condition frequently met in 
analyses of fracture in quasi-brittle solids. For this limiting case, when we consider (1-m) 
as a small quantity, the integral in Equation (1.6) can be simplified as follows 

→
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Replacing (1-m) by R/a, we obtain 
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in which G(λ) results from G(X), when the appropriate transformation of variables, cf. 
Eq. (1.5), is completed. It reads 
 

[ ]( , , ) exp (1 )nG nλ ω λ α λ= −         (1.9) 
 
Multiplication of Q in (1.8) by the factor 2S0 /a π , where S0 denotes the local value of 
the yield stress measured at the crack front, converts this expression to the so-called 
“cohesion modulus” (used in somewhat different form by Barenblatt [1]), namely 
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With the integral contained in (1.10) denoted by W0(n,ω), it is customary to solve 
Equation (1.10) for the characteristic length 
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This value is considered to represent the characteristic length parameter reflecting the 
microstructural and mesomechanical properties of the material. The equations provided 
in this section are valid for a smooth crack. 
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2. A FRACTAL MODEL OF THE COHESIVE CRACK AND THE 
CHARACTERISTIC LENGTH 
 

Recently proposed fractal model of Wnuk and Yavari [3] suggests a mathematical 
simplification based on associating a smooth crack to a stress field generated around a 
fractal crack. This is the so-called method of imaginary smooth crack. The approach 
provides a useful approximation to the problem at hand, including the cohesive aspects of 
a fractal crack. In the solutions now obtained a new variable enters: the fractal dimension 
of the crack. The fractal dimension, D, usually a non-integer, is a measure of how 
strongly a given entity diverges from its Euclidean counterpart. As a geometrical 
characteristic of the fracture surface, D enters as a new variable in most pertinent 
equations of the fractal fracture mechanics. Let us mention just one such relation – for a 
fractal version of the Griffith crack the familiar singularity of r-1/2 is replaced by a 
somewhat weaker singularity for the near-tip stress, r-α, where for a self-similar crack α 
depends on the fractal dimension D, namely (see Yavari, et al. [4] and Yavari [5]) 
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The model allows one to generalize the formula for the cohesive modulus of a smooth 
crack (1.10), to the one representing a fractal crack, namely 
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The inverse relation that relates the characteristic length R to the material properties such 
as S0, n, ω, Kf

coh, and the fractal geometry represented by the order of singularity α, is 
given now as 
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Index and superscript “f” have been added to designate quantities pertinent to a fractal 
crack. It is readily seen that for the limiting case of α = ½, the formulae (1.10) and (1.11), 
valid for a smooth crack, are recovered. With the notation 
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equation (2.3) can be re-written in a nondimensional form 
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Similarly, for a smooth crack, see Eqs, (1.10) and (1.11), we have 
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Dividing equations (2.5) and (2.6) side by side, one obtains a measure of the material 
characteristic length associated with a fractal crack 
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It is easy to verify that for the limiting case of α = ½, when W →  W0, the function Θ(α) 
reduces to one, as expected. Fig. 1a shows the dependence of Θ on the fractal singularity 
exponent α, plotted for the range 2

1
4
1 ≤≤α , while Fig. 1b shows a similar function, for 

which the fractal dimension D was chosen as an independent variable rather than α. As 
can be seen, the range ( 4

1 , 2
1 ) for α corresponds to the range (1, 2

3 ) for D. 
 There is a problem with physical interpretation of a fractal crack behavior when D 
approaches 2. In this limiting case the crack resembles a 2D object spread over a plane (a 
plane filling curve). For this case, the stress intensity factor, cf. Wnuk and Yavari [3] 
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attains the value 2 πσ . Note that the crack length “a” is suppressed entirely, and the 
entity 2 π  should thus be interpreted as Nueber’s stress magnification factor (rather 
than a stress intensity factor) corresponding to a certain 2D void. Assuming the void to be 
in the shape of a blunted crack with a finite root radius ρ, and the crack front identified at 
r = ρ/2, cf. Wnuk and Kriz [6], the stress at the crack front may be evaluated as follows 
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Setting it equal to the value predicted by the fractal model 
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leads to an expression defining the root radius of the fractal crack when D 2, or α→0, 
namely 
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3. NUMERICAL ASSESSMENT OF THE LENGTH CONSTANTS GOVERNING 
FRACTURE PROCESS AT MULTI-SCALE LEVELS 

If all the various fracture mechanics parameters, used to measure an enhancement 
of fracture toughness during the early stages of fracture, such as δ5 or JR, are denoted by a 
common symbol R, then the rate of toughness increase associated with growth of the 
subcritical crack, can be predicted as follows 
 

1 1 4log( )
2 2

dR RM
da

= − −
∆

       (3.1) 

 
This equation was first proposed by Wnuk (1972, 1974) on the basis of his theory of 
quasistatic crack and assuming a structured nature of the end-zone adjacent to the crack 
front, and several years later it was derived independently by Rice and Sorensen (1978) 
and Rice et al. (1980) from considerations of the Prandtl slip-line field in the near-tip 
region. Eq. (1.1) defines material resistance R-curve for the small scale yielding range. 
However, studies have shown the equation remains valid and produces correct results for 
loads σ raised to 70% of the yield stress σY, cf. Wnuk (1990, 2001). Symbol M in (3.1) 
denotes the tearing modulus, while ∆ is the characteristic microstructural length 
parameter identified with the size of the process zone, i.e., the zone of intensive necking 
occurring just prior to the final act of fracture. 
 For the range of crack tip plasticity considered here the resistance parameter R 
and the JR variable are directly related, namely R = (πE/8σY

2)JR, while the 
nondimensional tearing modulus M is related to Paris’ tearing modulus 
TJ=(E/σY

2)(dJR/da)ini and to Shih’s crack tip opening angle CTOA=δ/∆, with δ denoting 
Wnuk’s constant of final stretch, cf. Wnuk (1974,1979), in the following way: M = 
(π/8)TJ and M = (πE/8σY)CTOA. Here, E denotes the Young modulus and σY is the 
effective yield stress at the crack front, while σ0 is the uni-axial yield stress. For a 
pressure-vessel steel such as A 533 B, the approximate values of the pertinent material 
constants are, σ0/E = 3*10-3, TJ = 50, CTOA = 0.15, CTOD = 0.1 mm, and the 
characteristic material length parameter is defined as Rc = (π/8)KIc

2/σY
2. 
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 The length ∆ represents the constant crack growth step, which can be estimated as 
follows 

- for brittle materials 
 

2

(2 )
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∆ =          (3.2)  

  
- for quasi-brittle or ductile materials 
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Here, the symbol γ is used to denote surface tension, σmol is the molecular strength 
(≈E/30), Gf (equivalent to 2γ for the brittle fracture case) is the true work of fracture, 
while Smax is the maximum stress in the Wnuk-Legat cohesive-stress distribution law 
proposed for a quasistatic crack, cf. Wnuk and Legat (2002). 
 To get a numerical estimate of these length parameters, we replace γ by σmolb and 
then substitute E/30 for σmol, in where b denotes the average interatomic distance (b =0.2 
nm), arriving at 
 
 ∆ = (E/σmol)b = 30 b =  6*10-9 m = 6 nm     (3.4)  
 
Let us compare this estimate with the one obtained for quasi-brittle fracture, as would be 
expected in a pressure vessel steel, such as A 533 B. Using the data provided by Smith 
(1981), we have δIc as .1 mm = 10-4 m. With Gf

true estimated as 9/100 of the total energy 
dissipated within the end zone, Gf

true=.09ΦY∗Ic, the equation (3.3) can be re-written as 
follows 
 
 ∆ = (1/100)(E/ΦY) δIc = .01*111*10-4 m =111 µm = 555,000 b  (3.5) 
 
Note that we assumed that Smax = 3σY while σY/E = 3σ0/E = 0.9*10-2 yielding the value 
of the ratio E/ΦY as 111, and the length ∆ in (3.5) was thus estimated as   
1.11*10-4 m, which is equivalent to 555,000 b. 
 Now, let us proceed from the other end of the scale, beginning with the 
macroscopic range of length parameters characteristic of fracture in a pressure vessel 
steel. Let us start with an evaluation of the characteristic length Rc = (π/8)KIc

2/σY
2, which 

when π/8 is approximated by 1/3 reads as follows 
 
Rc = (1/3) EGf/σY

2 = (1/3)(E/σY)δIc =(1/3)(100)(10-4 m) = 3*10-3 m = 3 mm (3.6) 
 
The crack tip opening displacement δIc is evaluated as 
 
 δIc = (8/π)(σY/E)Rc = (3)(.9*10-2)(3*10-3) = 0.9*10-4 ~ 10-4 m = 0.1 mm     (3.7) 
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This agrees with the value assumed previously for the CTOD. Now, the crack growth 
step ∆ and the final stretch δ, both pertinent to the slow stable crack growth, can be 
estimated as follows: 
 
δ = (σY/E)2TJRc = (0.9*10-2)2(50)(3*10-3) = 121*10-7 = 12µm = 60,750b   (3.8) 
 
∆ = δ/CTOA = 121*10-7 m/0.15 = 81*10-6 m = 81 µm = 405,000 b   (3.9) 
   
The latter value of the estimated crack growth step is somewhat less than the one given in 
(3.5), and based on the data pertaining to the specific fracture energy Gf, but the order of 
magnitude of both deltas is the same. The material constants such as Paris tearing 
modulus TJ = 50, and the crack tip opening angle CTOA = 0.15, were taken from Smith, 
(1981). It is noteworthy that the crack growth step ∆ equals about 4/5 of the CTOD and 
about 1/30 of the Rc, while the final stretch δ is about one-tenth of the CTOD and 1/250 
of the Rc. We note that for a fractal crack all these numbers increase up to two orders of 
magnitude as the fractal dimension D approaches 2, and crack degenerates to a two-
dimensional void. 

To put these numbers into the context of nano-mechanics and quantum physics, 
we look at the two characteristic length parameters governing physical events at the 
nano-scale, namely the Compton wavelength λ = (1/500)nm or λ = (1/100)b, in where the 
other constant b = 0.2 nm = 2*10-10 m is the interatomic distance. We have represented 
all the length constants pertinent to non-elastic fracture process in terms the constant b. A 
consistent atomistic model of fracture would certainly incorporate all these constants in a 
natural way. 

 
4. CONCLUSIONS 

It has been demonstrated that a solid weakened by a fractal crack possesses a 
characteristic length, which is determined by the mesomechanical properties of the 
material, such as S0, n, ω,  and also by the fractal dimension of the crack, D. Two 
measures of this length have been suggested here for two intervals of the fractal 
dimension D. For the fractal dimension ranging from 1 (a smooth crack limit) to 1.846, 
the characteristic length 

f
cohK

f
cR  is used, and it varies between 1 for D = 1, and 201.8 for D = 

1.846. It should be noted that the value of 201.8 is three to four orders of magnitude 
greater than the values of the characteristic length observed in ductile metals. This result 
is of significance when the size effects related to fracture in cementitious materials is 
interpreted. The value of D = 1.846 is used as a cut-off value for a fractal dimension. 
Beyond this limit a root radius of a hypothetical blunted crack (equivalent to a fractal 
when D approaches 2) is suggested as a measure of the characteristic material length. In 
the limit of D = 2, this root radius equals a/π, where “a” denotes the nominal crack 
length. 

In Section 3 we provided an assessment of the numerical values of the length 
parameters pertinent to a process of non-elastic fracture. The constants were compared to 
the constants governing the physical events at the nano-scale, as is common in quantum 
physics. An example of such work is provided by the research of Ortiz et al., cf. Ortiz and 
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Phillips (1999), Ortiz, Cuitino et al. (2001), Nguyen, Repetto and Ortiz (2001) and 
Nguyen and Ortiz (2002). 
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Fig. 1 (a) Nonondimenisonal measure of the characteristic length for a material 
   weakened by a fractal crack shown as a function of the singularity exponent, α,  
   (b) Function Θ shown with the fractal dimension D featured as the independent              
   variable. 
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Fig. 2 (a) Function Γ shown against the singularity exponent of the fractal crack,  
          (b) variations of the same function as in Fig.1a, but shown against the 
     fractal dimension of the crack, D. 
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Fig. 3 (a) dependence of the function Λ on the singularity exponent α,  
          (b) dependence of Λ on the fractal dimension of the crack, D.  
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