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ABSTRACT 

A closed-form solution is provided for the stress, pore pressure and displacement fields near the tip of 
a crack, steadily running in an elastic fluid-saturated porous solid at crack tip speed ranging between 
the faster longitudinal wave-speed and the lower between the longitudinal Biot second wave-speed 
and the shear wave-speed. Mode I and Mode II loading conditions with permeable crack surfaces 
have been considered. The Biot theory of poroelasticity with inertia forces is assumed to govern the 
motion of the medium. At variance with the subsonic case where the crack tip fields are continuous in 
the body, for intersonic crack propagation, the stress and pore pressure fields display a strong 
discontinuity (shock wave) across two or four symmetric rays emanating from the moving crack tip. 
The obtained solution also reveals that favorable velocity regimes, occurring with crack face 
displacements in agreement with the sign of the tractions ahead of the crack tip, exist under both 
Mode I and Mode II loading conditions. The singularity of the stress and pore pressure fields 
predicted for these favorable regimes turns out to be weaker than the square-root singularity which 
characterizes the subsonic case. The introduction of a finite length cohesive zone allows to obtain an 
energy release rate at the crack tip that does not vanish, unlike for a point size process zone. 
 

1  INTRODUCTION 
The analysis of the stress and deformation fields near the tip of a crack dynamically 
propagating at high crack tip speeds in porous, fluid-saturated materials is of importance in 
many geophysical, environmental and biomechanical problems. Previous analytical 
investigations of crack propagation in fluid-saturated poroelastic media show that under 
quasistatic conditions the region close to the crack tip is practically drained [1, 2], whereas 
if the crack-tip dynamically propagates at subsonic speed, i. e. smaller than any of the three 
elastic wave-speeds for a poroelastic material, the pore pressure displays the same square 
root singularity as the partial stresses in the solid skeleton [3]. It is worth recalling that, in 
poroelastic materials, three elastic body waves propagate, two longitudinal waves affecting 
both solid and fluid phases and one shear-wave affecting only the solid phase. The relative 
order of the wave-speeds is of interest. The longitudinal wave-speed c1 is always the largest. 
The order of the second longitudinal wave-speed c2 and shear wave-speed c3 depends 
mainly on porosity. For high porosity level, the speed c2 of the slowest longitudinal wave 
(also called Biot wave) turns out to be smaller than the speed c3 of the elastic shear wave, 
whereas the reverse order holds for low porosity level. Moreover, subsonic and super-
Rayleigh crack propagation is found to be forbidden [3], because it would occur with 
negative energy flow to the crack tip, which implies crack face contact or compressive 
normal tractions ahead of the crack tip, in agreement with the dynamic propagation of a 
crack in homogeneous, linear elastic solids [4-5]. Note that the Rayleigh wave in 
poroelastic materials depends on the permeability properties of the free surface. In 
particular, for non-dissipative materials, it has been also proved that the Rayleigh wave 
speed for impermeable surface is smaller than any of the three elastic wave-speeds, whereas 
the Rayleigh wave for permeable surfaces exists only for low porosity level, up to a critical 
value defined by the condition cR = c2, which occurs for c2 < c3.  



 The analyses of intersonic crack propagation in linear and isotropic elastic materials 
performed in the last three decades [6-9] found that the crack-tip can propagate at speed 
between the shear wave speed cS and the longitudinal wave speed cL, but only under Mode 
II loading conditions. In this case, the stress fields suffer infinite jumps across two 
symmetric rays emanating from the moving crack tip and the resultant stress singularity at 
the crack tip and along the singular rays is weaker than square root, thus yielding a 
vanishing energy release rate, except for the special intermediate crack tip velocity √ 2 cS. 
However, Broberg [6] showed that the introduction of a cohesive zone model extends the 
favorable range of velocity to the entire intersonic regime, removing the problem of 
vanishing energy release rate. Investigations on Mode I intersonic crack propagation in 
linear elastic materials [5, 9] indicate that energy is not absorbed by the crack tip but 
emanates from it, which is not possible on physical ground, unless the loading is applied 
directly at the crack tip. 
 In the present investigation the analysis performed in [3] for subsonic crack propagation 
in a poroelastic medium has been extended to intersonic crack tip speed c between the 
largest and the smallest of the three poroelastic wave speeds. An analytical approach 
different from that developed in [3] is required, due to the modification in the character of 
the governing differential equations, which from elliptic turn hyperbolic, allowing for the 
appearance of strong discontinuity rays (shock wave front) emanating from the crack tip. 
The field equations are formulated in terms of eigensolutions and their relative amplitudes 
are fixed by the boundary conditions. By using a complex variable approach, closed form 
solutions are obtained for the three distinct intersonic regimes, under Mode I and Mode II 
loading conditions for the case of permeable crack surfaces. 
 

2  GOVERNING EQUATIONS 
Neglecting body forces and convective acceleration, the balances of momentum in terms of 
the apparent stress in the solid phase σs and of the intrinsic pore pressure p give: 

 div σs  = ρs u&& s +  ξ ( u& s − u& w),   div (− n p I) = ρw u&& w
 −  ξ ( u& s − u& w).  (1) 

 Here us and uw are the displacement vectors of the solid and fluid phases, n is the 
constant and uniform porosity, ξ is a constant proportional to the inverse of the permeabil-
ity, ρs and ρw are the apparent mass densities of the two phases, namely ρs = (1 − n) ρs and 
ρw = n ρw where ρs and ρw are the intrinsic mass densities of the solid constituent and fluid. 
 The stress and the pore pressure depend on the strains in the solid and fluid phases, 
through the following linear elastic constitutive equations: 

 σs = 2µ  sym ∇us + (λs div us + λsw div uw) I,    − n p = λsw div us + λw div uw.  (2) 

 The four parameters λs, λsw, λw and µ define the elastic material response and can be 
related to the Biot parameters, as shown by Loret [10]. The total stress of the mixture is 
defined as the sum of the apparent stresses in the phases, namely σ = σs − n p I. 
 The problem of a plane crack propagating at constant speed c along a rectilinear path in 
an infinite medium is considered (see Fig.1a). A Cartesian coordinate system (0, x1, x2, x3) 
centered at the crack tip and moving with it towards the x1 direction is considered, with the 
out-of-plane x3-axis along the straight crack front. A cohesive zone model with length L 
much smaller than the crack length is considered. Under steady-state conditions the 
material derivative of an arbitrary scalar field ϕ becomes ϕ& = −c ϕ,1.  
 For a plane problem, the displacement vectors can be expressed through the Green-
Lamé decomposition, by introducing the longitudinal and shear displacement potentials for 



the solid, ϕs(x1, x2, t) and ψs(x1, x2, t), and for the fluid, ϕw(x1, x2, t) and ψw(x1, x2, t), namely 

 us
1 = ϕs

,1 + ψs
,2 ,       us

2 = ϕs
,2 − ψs

,1 ,      uw
1
 = ϕw

,1 + ψw
,2 ,      uw

2 = ϕw
,2 − ψw

,1 .  (3) 

 The introduction of (2) and (3) into eqns (1), by using the material derivative rule under 
steady-state conditions, results in two systems of PDEs, for the longitudinal potentials: 

 (2µ + λs − ρs c2) ϕs
,11 + (2µ + λs ) ϕs

,22 + λsw (ϕw
,11 + ϕw

,22) + c ξ (ϕs − ϕw),1  = 0, 

 λsw (ϕs
,11 + ϕs

,22) + (λw − ρw c2) ϕw
,11 + λw ϕw

,22 − c ξ (ϕs − ϕw),1 = 0,  (4) 

and for the shear potentials: 

 (µ − ρsc2) ψs
,11 + µ ψs

,22 + c ξ (ψs
 − ψw),1 = 0,  ρwc2 ψw

,11 + c ξ (ψs − ψw),1  = 0. (5) 

 It is worth noting that eqns (4), involving the longitudinal potentials ϕs and ϕw, are 
coupled, as a consequence of the explicit coupling between the dilatation of the elastic solid 
skeleton and the pressure p in the pore fluid and also as a consequence of the diffusion 
phenomenon embodied in Darcy’s law. Eqns (5), involving the shear potentials for the 
displacements of the solid and fluid phases, are coupled through diffusion only. Hence, the 
latter equations uncouple in the non-dissipative case, namely for ξ = 0.  
 From the constitutive relations (2), the stress in the solid phase and the pore pressure 
become, in terms of displacement potentials: 

 s
11σ  = (2µ + λs) ϕs

,11 + λs ϕs
,22 + λsw (ϕw

,11 + ϕw
,22) + 2 µ ψs

,12, 

 s
22σ  = λs ϕs

,11 + (2µ + λs) ϕs
,22 + λsw (ϕw

,11 + ϕw
,22) − 2 µ ψs

,12, 

 s
12σ  = µ (2 ϕs

,12 + ψs
,22 − ψs

,11), 

   − n p  = λsw (ϕs
,11 + ϕs

,22) + λw (ϕw
,11 + ϕw

,22).  (6) 

 The displacement potentials introduced in eqns (3) are assumed in the form: 

 ϕJ(x1, x2) = a J Re[F(x1 + Ω x2)], ψ J(x1, x2) = bJ Im[G(x1 + Λ x2)].  (J = s, w) (7) 

where aJ and bJ are real constants and F and G are analytic functions with respect to their 
complex arguments, over the whole plane except on the crack faces. The scalars Ω and Λ, 
which are imaginary for subsonic crack propagation, may be real or imaginary for inter-
sonic crack propagation. The squares of the speeds of propagation of the two longitudinal 
waves and of the single shear wave in poroelastic solids are defined as 
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where  cs
2 = (2µ + λs)/ρs, cw

2 = λw/ρw and  csw
4 = (λsw)2/ρs

 ρw. The variations of the poro-
elastic wave-speeds, c1, c2 and c3, with the porosity n has been reported in Fig. 1b, together 
with the variations of the Rayleigh wave-speeds for permeable and impermeable surfaces, 
cR

per and cR
imp, obtained in [3] for a non-dissipative Berea sandstone, namely for ξ = 0. The 

three wave speeds define three distinct intersonic regimes, which are denoted by i), ii) and 
iii) in Fig. 1b. With respect to the relative order of the three poroelastic wave speeds, from 
(8) it may be observed that c1 is always larger than c2 and c3. Moreover, c2 > c3 for low 
porosity, e. g. for n < 0.128 in Berea sandstone (see Fig. 1), whereas c3 > c2 for higher 
porosity n. 



 As argued in [3], in a local analysis of the crack tip zone, the dissipative terms in eqns 
(4) and (5) give higher order contribution and thus can be neglected, formally setting ξ = 0. 
These terms derive from the diffusion phenomenon introduced by Darcy’s law, and they 
asymptotically vanish, since, for rapid dynamic crack propagation, the diffusion of the pore 
fluid does not play a role at the crack tip. For ξ = 0, a substitution of (7)1 into eqns (4) 
yields the following eigenvalues problem for the longitudinal and shear potentials: 
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 For non-trivial solutions of eqns (9) to exist, the determinants of the associated coeffi-
cient matrices must vanish. Their characteristic equations provide two distinct eigenvalues 
Ω1 and Ω2 for the dilatational potentials and a single eigenvalue Λ = Ω3 for the rotational 
potentials, where Ωj

2 = c2/cj
2 − 1, for j = 1,2,3. The corresponding longitudinal eigenmodes 

resulting from (9) are such that: 

 ak
w  =  sw

s

λ
ρ  (ck

 2 − cs
 2) ak

s . (k = 1, 2) (10) 

 For the shear eigenmode bw = 0, so that ψw(x1, x2) = 0, and bs is arbitrary. Then, the 
displacement potentials (7) assume the form: 

 ϕ s(x1, x2)   =  Re[F1(z1)] +  Re[F2(z2)],  ψs(x1, x2)   =  Im[G(z3)], 

 ϕw(x1, x2)   =  sw

s

λ
ρ {(c1

2 − cs
2) Re[F1(z1)] − (cs

2 − c2
2)  Re[F2(z2)]},  (11) 

where zj = x1 +  Ωj x2, for j = 1,2,3, and the analytic functions F1(z1), F2(z2) and G(z3) embody 
the constants a1

s, a2
s and bs, respectively. The eigenvalues Ωj, for j = 1, 2, 3, turn out to be 

real or imaginary, depending on the considered range of variation for the crack tip speed c. 
In any case, let αj denotes the modulus of the corresponding Ωj, namely αj = |1 − c2/cj

2|1/2. 
Note that for  c > c2 then Ω2 is a real constant. In this case, let Re[F2(z2)] = f (z2) where f is a 
real function of the real variable z2. Similarly, for c > c3 let Im[G(z3)] = g(z3) where g is a 
real function of the real variable z3. Due to Mode I or Mode II symmetry conditions, it is 
sufficient to consider the upper half-plane x2 > 0, where f (z2) and g(z3) denote two propagat-
ing waves with the front along the planes x1 + αk x2 = 0, for k = 2, 3 (see Fig.1a).  
 

a)          b)  
Figure 1. (a) geometry of the problem, with a cohesive zone of length L and two shock 
wave fronts, and (b) variations of poroelastic wave-speeds, c1, c2 and c3, and Rayleigh 
wave-speeds, cR

per and cR
imp, with the porosity n, in Berea sandstone with ξ = 0. 
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 Mode I loading conditions together with the conditions on the permeable crack surfaces 
and cohesive zone require  

 s
2,1u (x1, 0) = 0,   w

2,1u (x1, 0) = 0,    for x1 > 0;  p (x1,0) = 0,   for  x1< 0, (12) 
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where σ(x1) denotes the normal stress distribution on the cohesive zone, having length L 
much smaller than the crack length. Similarly, under Mode II loading conditions 
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where τ(x1) denotes the shear stress distribution on the cohesive zone. 
 

3  RESULTS 
Conditions (12)-(13) or (14)-(15) may be used to formulate an inhomogeneous Hilbert 
problem for the analytical function F1(z1), which has been solved in closed form. The 
singularity of the stress and pore pressure fields near to the crack tip turns out to be 
different under Mode I or Mode II loading conditions. In particular, let r−γΙ and r−γΙΙ denote 
the asymptotic variations of these fields with the distance from the crack tip, then the 
performed investigations show that γΙΙ = γΙ ± 1/2. Note that intersonic crack propagation 
occurring with a stress and pore pressure singularity weaker than square-root turns out to be 
favorable, as it implies a positive energy release rate. Conversely, a stronger singularity is 
associated to non favorable conditions. Note that the introduction of a finite length cohesive zone 
yields a finite energy release rate at the crack tip also for stress singularity weaker than square-root. 
 The obtained results show that Mode II intersonic crack propagation in poroelastic fluid 
saturated materials can always occur within the regimes i) and ii). In particular, it can be 
observed from Fig. 2 that the Mode II stress and pore pressure singularity is lower than the 
square root within the intersonic regime i), namely 0 ≤ γΙΙ < 0.5, and that, for high porosity 
level, the exponent γΙΙ attains a maximum at an intermediate crack tip speed. Note that as n 
and, thus, ρw tend to vanish, then c1 and cw become unbounded, whereas c2 and cs tend to 
the longitudinal wave speed cL for linear elastic materials. Therefore, in this limit the inter-
sonic range i) approaches the supersonic regime c > cL for linear elastic materials, occurring 
with a non-singular stress field near the crack tip [5]. This solution is indeed recovered by 
the present approach, since the exponent γ is found to vanish as n→0. Within the regime ii), 
there exists for low porosity a special crack tip speed which is intermediate between c3 and 
c2, such that the stress displays the square-root singularity, as it occurs for linear elastic 
material at c = √ 2 cS. Moreover, shear crack propagation within the regime iii) seems to be 
possible only for c2 < c < c*, where c* denotes the crack tip speed corresponding to γΙΙ = 0, 
which depends on the porosity level. 
 Mode I intersonic crack propagation is found to be forbidden within the entire regimes 
i) and ii), since it should occurs with a stress singularity stronger then square root (γΙ > 0.5) 
and a negative energy release rate. Within the regime iii) Mode I crack propagation is 
forbidden for crack tip speeds lower than the limit speed c* for intersonic Mode II crack 
propagation, but it may occur for c* < c < c3. In this favourable speed range, the exponent γΙ 
of the Mode I stress and pore pressure singularity is found to range between 0 and 0.5. 



 For crack tip speeds belonging to regime i), the partial stress fields turn out to be 
discontinuous along two pairs of symmetric rays (Mach cones) emanating from the crack 
tip (see Fig. 1), whereas a single pair of these rays appears for the regimes ii) and iii). Note 
that in the present analysis of the near tip region the dissipative terms have been neglected. 
However, their contribution, which must be considered in a full-field investigation, may 
smooth the jump in the partial stress fields far from the crack tip. 
 

     
Fig. 2. Strength of the stress and pore pressure singularity under Mode I and  Mode II as 
functions of the crack tip speed c ranging within the intersonic regimes i), ii) and iii) for 
Berea sandstone with permeable crack surfaces and different porosity levels. 
 
 

REFERENCES 
[1] Atkinson C., Craster R.V., Plane strain fracture in poroelastic media. Proceedings of the 

Royal Society A, 434, 605-633 (1991). 
[2] Radi E., Bigoni D., Loret B., Steady crack-growth in elastic-plastic fluid-saturated 

porous media. International Journal of Plasticity, 18 (3),  345-358 (2002). 
[3] Loret B., Radi E., On dynamic crack growth in poroelastic fluid-saturated media. 

Journal of the Mechanics and Physics of Solids, 49 (5), 995-1020 (2001). 
[4] Freund L.B., Dynamic Fracture Mechanics; Cambridge University Press, Cambridge, 

1990. 
[5] Broberg K.B., Cracks and Fracture, Academic Press, London, 1999.  
[6] Broberg K.B.: The near-tip field at high crack velocities. International Journal of 

Fracture, 39 (1¯3), 1¯13 (1989).  
[7] Liu C., Huang Y., Rosakis A.J., Shear dominated transonic interfacial crack growth in a 

bimaterial – II. Asymptotic fields and favourable velocity regimes. Journal of the 
Mechanics and Physics of Solids, 43 (2), 189-206 (1995). 

[8] Rosakis A.J., Samudrala O., Coker D., Cracks faster than the shear wave speed. 
Science, 284 (5418), 1337¯1340 (1999).  

[9] Kubair D.V., Geubelle P.H., Huang Y.Y., Intersonic crack propagation in homogeneous 
media under shear-dominated loading: theoretical analysis. Journal of the Mechanics 
and Physics of Solids, 50 (8), 1547-1564 (2002). 

[10] Loret B., Harireche O., Acceleration waves, flutter instabilities and stationary 
discontinuities in inelastic porous media. Journal of the Mechanics and Physics of 
Solids, 39 (5),  569-606 (1991). 

 

0.4 0.2 0 0.6 

0.1 

0.2 

0.3 

0.0 

0.4 

(c− c0)/(c1− c0) 
0.8 1.0 

0.5 

γΙΙ 

0.02 

0.05 

0.08 

0.1 n = 0.2 

0.6 

0.7 

0.8 

0.5 

0.9 

1.0 

γΙ 

i) 
0.4 0.2 0 0.6 

-0.3

-0.1 

0.1 

-0.5

0.3 

(c− c2)/(c3− c2) 
0.8 1.0 

0.5 

γΙΙ

0.15 

0.20 

0.16 

0.18 

n = 0.25 

 0.2 

 0.4 

 0.6 

 0.0 

 0.8 

 1.0 

   γΙ 

iii)

0.4 0.2 0 0.6 

0.1

0.2 

0.3 

0.0

0.4 

(c− c3)/(c2− c3)
0.8 1.0 

0.5 

γΙΙ

0.6

0.7 

0.8 

0.5

0.9 

1.0 

    γΙ 

   0.03 
0.01 

 0.05 

0.08 

n = 0.1 

ii)


