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ABSTRACT 
The behaviour of reinforced concrete (R.C.) structures under cyclic loading has been studied for only a few 
decades, and extended studies are more and more needed for structures such as bridges, where fatigue 
phenomena can be remarkable.  In the present paper, a theoretical model based on fracture mechanics 
concepts is proposed in order to analyse the mechanical damage of a reinforced concrete beam with a T cross-
section subjected to cyclic bending. Local phenomena, such as fracturing or crushing of concrete and yielding 
or slippage of the longitudinal steel reinforcement, are examined. Further, fatigue life is predicted by applying 
a crack growth law, and the energy dissipated during the plastic shake-down phenomenon is evaluated. 
 

1   INTRODUCTION 
The behaviour of ordinary or prestressed reinforced concrete (R.C.) structures under cyclic loading 
has been studied for only a few decades, and some Standards [1,2] give us rules on how to take 
into account damage phenomena when designing R.C. structures, but additional investigations are 
needed. Some interesting research works about fatigue behaviour of concrete can be found in 
Ref.[3] and in several theoretical and experimental papers (for instance, [4-10]). 
     In the present paper, a fracture mechanics model proposed in Refs [4-7] for ordinary R.C. 
beams with a rectangular cross-section under cyclic bending is extended to beams with a T cross-
section. Local phenomena, such as fracturing or crushing of concrete and yielding or slippage of 
the longitudinal steel reinforcement, are examined.  Fatigue life and the energy dissipated during 
the plastic shake-down phenomenon can be evaluated. 
 

2   COMPLIANCES OF A CRACKED BEAM WITH A T CROSS-SECTION 
Examine a linear elastic beam of length 2 l, with a T cross-section. A through-thickness edge crack 
of relative depth ξ = a / b , with a  ≤  (b  –  b T), is assumed to exist in the lower part of a given 
beam cross-section (Fig.1).  The cracked cross-section is divided into three sub-sections, A, B and 
C, and the beam can be modelled by springs arranged in series and parallel.  Consequently  F * 
and M * can be expressed as follows : 
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where SA,F , SB,F , SC,F are the extensional stiffnesses of the elements A, B and C, respectively, 
whereas SA,M , SB,M , SC,M are the bending stiffnesses of the above elements.  Such stiffnesses are 
equal to: 
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Figure 1: Cracked beam with a T cross-section. 
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with the compliances λF and λM given by eqns (19) and (21) in chapter 18 of Ref.[11], respectively. 
Further, E is the Young modulus of the material, and the cross-section sizes are shown in Fig.1. 
Therefore, the total relative displacement u of the beam ends can be obtained from eqns (1), (3) 
and (4), whereas the total relative rotation ϕ  can be computed through eqns (2), (5) and (6). 
     Then, the stress-intensity factor is determined : 
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for ξ = a / b ≤ 0.6 [12] and, by substituting u and ϕ  deduced as is described above, we get : 
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     Now the localised compliances (λ ) of the cracked T cross-section being analysed are 

evaluated.  The relative displacements between the ends of the infinitesimal beam portion 
containing the cracked cross-section (Fig.1, left) can be expressed through the following equations: 

  , , , , ,* *T F T F M Tu F Mλ λ= +            (11) 
  , , , , ,* *T F M T M TF Mϕ λ λ= +            (12) 

where  stands for localised, and the subscript T indicates that the behaviour of a beam with a T 
cross-section is being examined. 
     The localised extensional compliance , ,F Tλ  can be computed by letting M * = 0  and 

assuming that all the elastic work done by F * is used to create an increment of cracked surface : 
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where the energy release rate G is related to K I   by the expression  G = KI 
2 / E .  By employing the 

relationship da = b dξ  and eqns (8) and (11) for M * = 0, we can obtain from eqn(13) : 
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     Similarly, the localised bending compliance can be obtained from the energy balance equation 
in the case of  F * = 0  : 
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and the combined extension and bending compliance is determined from the energy balance by 
taking into account both  F *  and  M *  : 
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3   R.C. BEAM  UNDER MONOTONIC BENDING 

Consider a cracked R.C. beam with a T cross-section under a monotonic bending moment M 
(Fig.2). A rigid-perfectly plastic behaviour is assumed for steel, whereas a linear elastic constitutive 
law is supposed for concrete. Further, assume that the crack depth a is greater than the steel cover 
h , and therefore the concrete cross-section is subjected to M and the eccentric compressive axial 
force F due to the tensile reaction of the longitudinal steel reinforcement. Consequently, the global 
internal reactions on the concrete cross-section are equal to : 

  * ( / 2 )M M F b h= − −             (17) 
  *F F= −               (18) 

     Up to the instant when steel yields, the relative rotation (eqn(12)) of the ends of the 
infinitesimal beam portion (Fig.2, left) is assumed to be equal to zero [4].  Through this 
compatibility condition and eqns (17) and (18), the relationship between the applied bending 
moment M and the tensile force F of the longitudinal steel reinforcement is determined : 
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     The steel yielding occurs when the bending moment is equal to MP , which can be obtained 
from eqn(19) by substituting  the force FP = fy As of steel plastic flow to F , where fy and As are the 
yield strength and the area of the longitudinal steel reinforcement, respectively. Note that the plastic 
 

 

Figure 2: Cracked T cross-section of a reinforced concrete beam under bending moment M. 
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bending moment MP  can be computed only numerically from eqn(19) (that is, eqn(19) is not a 
closed form expression of MP)  since rT (ξ) is a nonlinear function of MP : as a matter of fact, RF 
and RM are functions of SB,F and SB,M (eqns (9) and (10)), and such stiffnesses depend on λF and 
λM (eqns (4) and (6)), which vary with e ,  that is to say,  with  MP  : 
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     Another possible damage phenomenon is that due to the slippage of the longitudinal steel 
reinforcement.  Such a slippage occurs in correspondence to the bending moment MPO , which can 
be computed from eqn(19) by substituting the force FPO of pull-out to F .  As an initial attempt, 
this force of steel slippage could be assumed equal to : 
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with n = number of longitudinal steel bars, π  Φi = cross-section perimeter of the i-th bar, and 5 Φi 
= length of the bar portion on which the shear stress τ f  of friction between steel and concrete acts 
[1].  Analogous to the case of the plastic bending moment MP , the pull-out bending moment MPO 
can be determined only numerically from eqn(19), since rT (ξ) is a nonlinear function of MPO . 
     Further, a collapse mechanism to be considered for a R.C. beam cross-section is the unstable 
fracture of concrete, which occurs when a crack instantaneously grows provoking the beam failure.  
The fracture bending moment MFr can be computed for a cracked T cross-section by equalling the 
maximum value of the stress-intensity factor (eqn(8)) to the concrete fracture toughness KIC . The 
global internal reactions M *  and F *  to be inserted into eqn(8) are given by eqns(17) and (18), 
where M = MFr and, if MFr > MP,PO (with MP,PO = min (MP, MPO)), the force F has to be assumed 
equal to either FP in the case of steel plastic flow or FPO in the case of pull-out of the longitudinal 
bars.  Note that, analogous to the previous cases of MP and MPO , the fracture bending moment 
MFr can be computed only numerically, since RF (ξ) and RM (ξ) are nonlinear functions of MFr .  

 
4   R.C. BEAM  UNDER CYCLIC BENDING 

Now consider a cracked R.C. beam cross-section under unidirectional cyclic bending moment 
(varying between 0 and the maximum value M, Fig.3) and, in the first stage of the analysis, 
assume that the crack does not propagate. 
     If the force acting on the longitudinal steel reinforcement in correspondence to the maximum 
value M of the cyclic bending moment (point L1 in Fig.3) is equal to FP,PO , with FP,PO = min (FP, 
FPO), a residual rotation of the cross-section remains after unloading (point U1 in Fig.3) due to 
either the steel plastic flow (if FP < FPO) or the reinforcement slippage (if FPO < FP).  
Consequently, during the unloading process (from L1 to U1), concrete tends to go back to its initial 
position and, after unloading (point U1), compresses the steel reinforcement with an unknown force 
F (which is a tensile force on the concrete cross-section). The above residual rotation after 
unloading is determined by inserting the following values of global internal reactions into eqn(12): 
 

  * ( / 2 )M F b h= −              (23) 
  *F F=               (24) 

with  * * ( / 2 )Ue M F b h= = −    .           (25) 
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Figure 3: Elastic shake-down (MP,PO < M < MSD) and plastic shake-down (MSD < M < MFr). 
 
     On the other hand, the global internal reactions in correspondence to the maximum value M of 
the cyclic bending moment (point L1 in Fig.3) are expressed by: 

  ,* ( / 2 )P P OM M F b h= − −             (26) 
  ,* P P OF F= −               (27) 

The eccentricity Le  is given by the ratio between such expressions of internal reactions, whereas 
the under-loading rotation is computed by inserting the above values of M * and F * into eqn(12). 
     By assuming a rigid-perfectly plastic behaviour for the steel reinforcement, the residual rotation 
is equal to the under-loading rotation (see elastic shake-down in Fig.3, on the right-hand side) [5]. 
Such a compatibility condition allows us to obtain the relationship between the maximum value M 
of the applied cyclic bending moment and the steel compression force F . From such a relationship, 
the bending moment MSD of plastic shake-down, i.e. the lowest value of the maximum bending 
moment M  for which the steel compression force F  is equal to FP,PO , can be obtained : 
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where , ,M Tλ  and rT (eqn(15) and eqn(20), respectively) depend on the above eccentricities Le  

and Ue . Analogous to the previous cases of MP , MPO and MFr , MSD can be computed only 
numerically from eqn (28) , since , ,M Tλ  and rT   are nonlinear functions of MSD . 
     If the maximum value M of cyclic loading (point L2 in Fig.3) is greater than MSD , the energy 
dissipated in each cycle (dashed area 1-2-3-4) can be obtained as follows: 

   ( ), ,S D M S D
w o r k M
c y c l e

ϕ ϕ= −           (29) 

where ,Mϕ  is determined by substituting the global internal reactions (eqns (26) and (27)) into 

eqn(12). Analogously, ,S Dϕ  is computed by inserting eqns (26) and (27), with M = MSD , into 
eqn(12).  Note that the result of eqn(29) is slightly approximate since the segments 4-1 and 2-3 in 
Fig.3 are not exactly linear and, consequently, the dashed area is not exactly a parallelogram. 
 

     If the crack propagates in a stable manner [6,7], it is useful to consider all the bending moment 
expressions in a dimensionless form, dividing them by KIC b 3 / 2 t .  The dimensionless bending 

moments S DM  and M F r  against the relative crack depth ξ  represent two curves which intersect 

at a critical point with coordinates (ξCR, C RM ) (Fig.4a). Note that, by increasing ξ from the initial 
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Figure 4: Plastic shake-down with hysteretic loops from ξ In  to ξ Fr. 

 
value ξ I n  to the unstable fracture value ξ Fr , the slope of the hardening line in a diagram of 
bending moment against cross-section rotation (Fig.4b) decreases monotonically and significantly, 
while the value of  M P,PO  increases very slightly. 

If the dimensionless maximum bending moment M  is greater than or equal to C RM  
(Fig.4), fatigue crack growth occurs from ξ I n  to ξ Fr , and a hysteretic loop is described for each 
loading cycle.  Finally, fatigue life can be determined by numerically integrating the Paris law  
from ξ I n  to ξ Fr. 
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