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ABSTRACT 

Experiments to evaluate and validate processes of engineering and science are particularly important when 
the phenomena under investigation may be studied empirically, as can metal fatigue or medical injection 
dosages. Sometimes during an experiment, individual tests in a series are not completed, or must be 
suspended or interrupted, or are somehow damaged. Such test points are referred to as “suspended,” or 
“censored points,” or in the case of metal fatigue are simply called runouts. All these names refer to test 
specimens that do not fail under the same conditions as do other specimens or data points. In reliability and 
biometry, runout data are termed Type I censored observations. Inclusion of runouts in data analysis and 
interpretation can be problematic, and such ad hoc approaches as ignoring the runout observation or treating it 
as a failure can significantly affect estimation. Even when data are plotted and represented by a mathematical 
function utilizing least squares analysis to minimize data scatter about the “best fit” function, runouts and 
censored observations cause estimation problems because they cannot be incorporated directly into a least-
squares analysis procedure. This paper offers a methodology to help alleviate the problems presented by 
runouts and censored data. The methodology handles runouts and censored data by employing the maximum 
likelihood estimation (MLE) method to incorporate the censored data properly. The methodology is 
illustrated with an example problem. 
 

1  INTRODUCTION 
We consider a set of data from fatigue tests such as are typically conducted on a batch of identical 
specimens, each cycled under constant amplitude stress, S, until the specimen fails. At failure, the 
number of cycles applied, N, is recorded. At a given constant amplitude stress level, we assume 

that N is given by the Weibull distribution N∼Wei(α,β). Then X=ln(N) and thus N=eX, dN=eXdX. 
The extreme value distribution is denoted X∼EV(µ,σ). To calculate the mean and variance of 
X∼EV(µ,σ), we calculate the moment generating function 
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Using eqn (1), we derive  
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where Γ'(1) = -γ and γ is Euler’s constant γ ≈  0.5772. Then, 
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and , and Γ′(α) and Γ′′(α) are the first and second deviations of the 
Gamma Function. 
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1.1 Regression model 
 
The regression model σε+−=≡ )ln()ln()ln( SmkNX , where ε∼EV(0,1), (thus 



X|S∼EV(ln(k)+mln(S),σ)), is widely used in reliability and biometry (Lawless [1], Hosmer [2]). We 
write the density of X|S=ln(N)|S and the corresponding reliability function 







 )(+)(−







 +−

−

−





 +−

=)

=

σ

σ

σ

σ
σ σ

Smkx

smkx

e

esmkx

emkSxR

emkSxf

lnln

)ln()ln(

,,,|(

1),,,|(
)ln()ln(

 

These can be used to construct the likelihood function for the MLE. 
 
1.2 The likelihood function 
 
In such introductory texts on statistics as Bedford [3], the likelihood that a set of parameters θ  will 
be found is defined for a series  of independent observations as  nxxx ,...,, 21
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where f is the density function of X; however, this assumes that complete observations, e.g., all 
failure times, can be made. When Type I censoring occurs at a time x*, and r items have failed and 
n-r are removed from the test without failure, the likelihood is redefined and can be shown to be 
equal to 
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Optimizing L is equivalent to optimizing L = ln(L), which is given by eqn (3), and can be 
maximized using a Newton–Raphson technique: 
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2 APPLICATION OF THE MODEL AND INITIAL RESULTS 

We demonstrate the usefulness of the Weibull regression model developed here using a 
hypothetical data set. Nine specimens are tested at 3 different stress levels. One specimen does not 
fail when reaching the age of 100,000 time units, and is thus classified as a runout. The likelihood 
function, eqn (2), is unimodal (see Figure 1).  
     To find the MLEs of θ = {ln(k),m,σ} by applying the Newton–Raphson method, we need three 
equations, which would be functions of this vector of variables. Unfortunately, the Newton–
Raphson algorithm does not converge for this data set. Therefore, a different approach is applied. 
We fix σ, and then use the Newton–Raphson method to calculate the MLEs of ln(k) and m such 
that the maximum of the likelihood function is a one-dimensional function of σ, which many 
available algorithms can maximize. Hence we reduce the problem from three dimensions to one. 
This approach works well and gives accurate results that are exactly the same as those returned by 
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Figure 1: Plot of the likelihood function L. 

 
the Nelder–Mead simplex search method, even though the starting points were fairly far from the 
optimal solution. The initial guesses for ln(k) and m are determined by considering the runout as a 
failure and then applying the standard least-squares error method, but there is no need for a very 
accurate approximation. For the parameter σ, the unbiased estimate of the standard deviation of 
error term σ0 is taken as the initial guess, 
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where ln(ks) and ms are the least-squares error estimators. The Newton–Raphson method allows 
the following MLEs for the model’s input parameters to be determined: ln(km) = 13.438, mm = 
1.499, σm = 0.3168. Given these values, we plot the estimated S/N curve obtained using both the 
least-squares error and the MLE methods. 
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Figure 2: Estimations of the S/N curve. 

 
Clearly, the S/N curves corresponding to the MLEs take higher values than the curves obtained 
using the least-squares error technique. This result is expected, because we have now taken into 
account, that one of the specimens did not fail during the test or during its residual life, and that 
the mean lifetime is longer than the estimation obtained by considering the runout as a  



a) Runout as failure             b) Runout dropped 
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Figure 3: Comparison of S/N Curves obtained by two different techniques. 

 
failure or by not taking this specimen into consideration at all. The difference between the 
estimated S/N curves is proportional to the probability that the specimen whose observation was 
interrupted survives longer than the termination time of the test. We investigate two cases: (1) 
Runout as failure and (2) Runout dropped, and show (3) Bounds on the prediction.  
 
2.1  Runout as failure 
 
We select this case to allow direct comparison of the least-squares error and the MLE methods by 
considering the data set as complete observations. We alter the data set such that the termination 
time is regarded as the lifetime of the component whose test is terminated before the actual failure. 
We apply both the Newton–Raphson and the Nelder–Mead simplex methods to confirm the 
results. The MLEs here are ln(k) = 13.247, m = 1.427 and σ = 0.2825. Figure 3a shows a rather 
big difference between the S/N curves obtained by applying the two methods of estimation 
presented above (ignoring the runout and treating it as a failure). The MLE results tend to imply 
that the tested specimens have higher resistance to stress than do the runout specimens. The 
difference is caused by the underlying assumptions that we implicitly or explicitly introduced into 
the analysis by choosing a specific method of parameter estimation. The least-squares error 
method is fully nonparametric, whereas the MLE approach requires that an underlying probability 
distribution be specified for the specimen’s lifetime. The latter method can lead to incorrect results 
if the true underlying probability distribution is different from the assumed one. The Weibull 
distribution is one of those most widely used in reliability, and an enormous number of 
applications have proven its usefulness. Moreover, a parametric model can handle outliers much 
better than a nonparametric model can, because it assigns a smaller probability of occurrence to 
such observations. The least-squares method treats all observations equally; hence outliers 
introduce large variances into the estimation. 
 
2.2 Runout dropped  
 
Consider the situation when the runout is completely removed from the data set and compare the 
least-squares error and the MLE methods. The MLEs in this case are ln(k) = 12.77, m = 1.249, and 
σ = 0.2627. Figure 3a shows both estimations of the S/N curve. Again, the MLE indicates that the 
expected life of the specimen in terms of stress is longer than the least-squares error estimate. In 



general, the observations lie below the S/N curve given by the MLE. This might be because the 
observations with longer lifetimes contribute more to the overall likelihood function. 
 
2.3   Bounds on the prediction 
 
Under the assumption that the logarithms of the observation times are outcomes of the extreme 
value distribution, we can determine a 90% prediction interval for the life, as well as the 
conditional probability density functions. Both features are added to the plot in Fig. 3a. Moreover, 
because the errors in the least-squares fitting method are normally distributed, we can plot the 95% 
confidence interval for the estimated life. Fig. 3b shows the least-squares error estimate of the S/N 
curve with the confidence bounds when the runout is treated as a failure. 
 
a)               b)  
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Figure 4: More featured plots of the estimation of the S/N curve. 

 
We derive confidence bounds on the parameters { mmmm mk }σθ ,),ln(=  by applying the likelihood 
ratio test  
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where L(k,m,σ;D) is the maximum of the likelihood function given in eqn (2). We need to find the 
isosurface described by eqn (4). We take 1 (one) as the degree of freedom of the chi-square 
distribution in this equation so that we change only one parameter at a time, keeping the other two 
constant. This isosurface, along with its projections on planar planes, is depicted in Figure 5. 
 



 
Figure 5: The 95% confidence region of the parameters. 

 

3  CONCLUSIONS 
When analysts face the problem of dealing with censored data, treating those observations as 
failures is inappropriate, because such interference adds information into the data set that was not 
revealed by the specimens under the test itself. On the other hand, excluding censored observations 
from the analysis is clearly a waste of time and money spent on testing a given specimen. A 
natural way to deal with such a data set is to use the MLE method. The only drawback to using 
MLE is that the analyst must assume an underlying probability distribution function for the 
lifetime of the tested specimens, which in general would depend on the nature of the items being 
tested. Many applications would justify use of the Weibull distribution. Using a hypothetical data 
set, we show that the MLE approach can be applied successfully. Supported by the Newton–
Raphson method, our method is an attractive way to derive the S/N curve because it depends only 
on the observed data and on the underlying probability distribution, and because it makes use of all 
the information included in the data. 
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