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Abstract
Energetically consistent crack face boundary conditions are presented for cracks in electromechanical materials.  The model
assumes that the energy of the solid can be computed from standard infinitesimal deformation theory and that the opening of
the crack faces creates a capacitive gap that can store electrical energy.  The general derivation of the crack face boundary
conditions is carried out for nonlinear but reversible constitutive behavior of both the solid material and the space filling the
gap.  It is shown that a simple augmentation of the J-integral can be used to determine the energy release rate for crack advance
with these boundary conditions.  The energetically consistent boundary conditions are then applied to the Griffith crack
problem in a polar linear piezoelectric solid and used to demonstrate that the crack tip energy release rate is equivalent to the
global energy release rate for the system.  A nonlinear constitutive law is postulated for the crack gap as a model for electrical
discharge and the effects of the breakdown field on the energy release rate are ascertained.
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1. Background
This work reports on results that have been developed in greater detail in Landis (2004).  The purpose of this work is to
investigate energetically consistent forms of crack face boundary conditions for fracture in electromechanically active
materials.

In order to determine the consistent boundary conditions for a crack gap that is able to support electrical fields the following
are implemented.  (1) Linear kinematics can be used to describe the deformation of the cracked solid.  (2) The energy of the
cracked body can be computed using its undeformed configuration.  (3) When the crack opens electric fields can permeate the
crack medium and electrical energy can be stored within the crack.  (4) The energy stored within the crack medium can be
computed from the deformed configuration of the cracked body.  (5) Electric field components within the crack medium
parallel to the crack faces are negligible compared to the electric field normal to the crack.

The energetically consistent boundary conditions are then determined from the following procedure.  First, the variation of the
total electrical enthalpy of a combined cracked solid and crack gap system is derived.  Then, a second system is proposed with
the crack gap removed, and in its place tractions and surface charge densities are applied to the crack surfaces.  In order for
these two systems to be equivalent, the variations of the total electrical enthalpy of these systems must be identical for arbitrary
variations of the crack face displacement and electric potential.  Applying these identities will allow for the identification of
effective tractions and surface charge densities that are applied by the crack gap medium to the cracked body.

The total electrical enthalpy Ω of the solid-crack system can then be written as, Suo et al. (1992),

 Ω u,φ( ) = h dV
V∫ + hc ΔundSSc∫ − biui dVV∫ + qφ dV

V∫ − tiui dSSt∫ + ωφ dS
Sω∫ (1.1)

Here u is the displacement vector with Cartesian components ui , φ is the electric potential, h is the electrical enthalpy density
of the solid, hc  is the electrical enthalpy density of the crack gap, Δun  is the opening displacement of the crack, bi  the
components of the applied body force, q the applied volume charge density, ti  the components of the surface traction, ω the
applied surface charge, Sc  is the crack surface, St  the region of the material surface where tractions are applied, and Sω  the
region of the surface where charges are applied.  Here the second term on the right hand side has been included to account for
the electrical enthalpy of the crack gap that has an electrical enthalpy density of hc .  Note that it is assumed that the separation
of the crack surfaces is small such that the volume of the crack gap is given by Vc = ΔunSc .  In essence, the evaluation of this
second term is carried out in the deformed configuration of the body while the remaining terms are evaluated in the
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undeformed configuration.  Herein lies a fundamental inconsistency with this model that can only be properly removed with a
more general large deformation analysis.  However, the assumptions associated with Equation (1.1) are entirely consistent with
the “exact” boundary conditions proposed by Hao and Shen (1994) that appear extensively in the literature.

Applying the following definitions,

Ec = − Δφ
Δun

 and Dc = − ∂hc
∂Ec

(1.2)

with Δφ  being the electric potential jump across the crack, the variation of the second term of Equation (1.1) can be written as

Δun
∂hc
∂Ec

δEc+hc δΔun
⎛
⎝⎜

⎞
⎠⎟Sc∫ dS = DcδΔφ+ hc + DcEc( )δΔun⎡⎣ ⎤⎦ dSSc∫ (1.3)

Recall that this term represents the variation of the contribution to the total electrical enthalpy from the crack.  This term
consists of an electrical contribution associated with the electric field acting through the crack gap plus a mechanical
contribution arising from the fact that the stored electrical energy within the crack gap increases as the volume of the gap
increases.  Hence, there is an increase in energy of the system associated with increasing crack opening displacement, and the
work conjugate force for this configurational change is equivalent to the internal energy density of the crack gap, i.e.

 hc + EcDc = uc .  This work conjugate force will be renamed σ c  or the effective stress within the crack gap.  Such stresses that
occur due to displacements and electrical effects are common in more general studies on large deformation behavior of
electrically active materials and are referred to as Maxwell stresses.

Ultimately, it is shown in Landis (2004) that the general energetically consistent boundary conditions on the crack faces can be
derived as,

ω + = −Dini
+ = Dc = − ∂hc

∂Ec
 on Sc

+ (1.4)

ω− = −Dini
− = −Dc =

∂hc
∂Ec

 on Sc
− (1.5)

ti
+ = σ jin j

+ = σ cni
+ = hc + EcDc( )ni+  on Sc

+ (1.6)

ti
− = σ jin j

− = σ cni
− = hc + EcDc( )ni−  on Sc

− (1.7)

Here the superscript + or – represents the top or bottom crack face and the ni  are the components of the associated unit normal
pointing into the crack.  In the following, more specific forms for these boundary conditions will be given for the special cases
of perfect linear dielectric crack gap behavior and an idealized model for electrical discharge within the crack gap.

2. The linear dielectric and discharging crack gaps
Consider a crack gap with linear dielectric behavior that has been studied by numerous authors.  Specifically, the electric field
versus electric displacement behavior of the gap is assumed to be

Dc = κ 0Ec (2.1)

Here κ 0  is the dielectric constant of the material filling the crack gap and in most situations is identified as the dielectric
permittivity of free space.  Then, the electrical enthalpy density of the crack gap for this case is

hc = − 1
2
κ 0Ec

2 (2.2)

Finally, the crack boundary conditions can be stated as
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Dn
+ = Dn

− = −κ 0
φ+ −φ−

un
+ − un

−  on Sc
+  and Sc

− (2.3)

and

σnn
+ = σnn

− = 1
2
κ 0

φ+ −φ−

un
+ − un

−

⎛

⎝⎜
⎞

⎠⎟

2

 on Sc
+  and Sc

− (2.4)

Here a convention is defined on the crack faces such that the subscript n represents the component normal to the crack surfaces
with the positive direction associated with the lower crack face normal.  Specifically, Dn

+ = Di
+ni

− , Dn
− = Di

−ni
− , un

+ = ui
+ni

− ,

un
− = ui

−ni
− , σnn

+ = σ ji
+nj

−ni
−  and σnn

− = σ ji
−nj

−ni
−  (no summation over n).  Note that for the standard crack configuration with the

crack lying along the x1-axis and perpendicular to the x2-axis, the subscript n in Equations (2.3) and (2.4) can be replaced by a
numeral 2.  Also note that the electric displacements and stresses denoted in these equations are those quantities in the solid at
the crack surface.  Finally, Equation (2.3) is the so-called “exact” boundary condition that has received considerable study in
the literature.  However, aside from the work of Landis and McMeeking (2000), the non-zero traction component of these
boundary conditions has yet to be recognized or studied.

For the electrically discharging crack gap it is assumed that the crack gap behaves in a linear dielectric fashion up to some
critical electric field level for discharge Ed .  At this point the electric displacement in the gap will be Dc = κ 0Ed .  It will be
assumed that the crack gap cannot support electric fields larger than Ed , but that charge can be transferred between the crack
faces such that the effective electric displacement of the crack gap can increase without bound.

For this simple model for discharge, the electric displacement in the crack gap takes on the mathematical form,

Dc = κ 0Ec  if Dc ≤κ 0Ed (2.5)

Dc = sgn ωd( )κ 0Ed +ωd  and Ec = sgn ωd( )Ed  if Dc ≥κ 0Ed (2.6)

Here ωd  represents the amount of charge per unit area transferred between the crack faces.  Then, the electrical enthalpy
density of the crack gap can be given as

hc = − 1
2
κ 0Ec

2  if Dc ≤κ 0Ed (2.7)

hc = − 1
2
κ 0Ed

2  if Dc ≥κ 0Ed (2.8)

Then if Dc ≤κ 0Ed  the boundary conditions along the crack faces can be given as

Dn
+ = Dn

− = −κ 0
φ+ −φ−

un
+ − un

−  on Sc
+  and Sc

− (2.9)

and

σnn
+ = σnn

− = 1
2
κ 0

φ+ −φ−

un
+ − un

−

⎛

⎝⎜
⎞

⎠⎟

2

 on Sc
+  and Sc

− (2.10)

If Dc ≥κ 0Ed  the boundary conditions are
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− φ+ −φ−

un
+ − un

− = sgn Dc( )Ed  on Sc
+  and Sc

− (2.11)

Dn
+ = Dn

− = κ 0 sgn Dc( )Ed +ωd  on Sc
+  and Sc

− (2.12)

and

σnn
+ = σnn

− = Ed Dc − 1
2
κ 0Ed

2 = Ed ωd + 1
2
κ 0Ed

2  on Sc
+  and Sc

− (2.13)

These boundary conditions will be used to analyze a Griffith crack in a linear piezoelectric solid in the next section.

3. The Griffith crack in a poled linear piezoelectric solid
In this section the energetically consistent boundary conditions will be applied to the Griffith crack in a poled linear
piezoelectric solid.  For simplicity the material will be poled perpendicular to the crack and only Mode I and Mode D loadings
will be applied to the sample.  For these calculations D is the total electric displacement including the remanent polarization,
ω s  is the charge separation along the crack faces, and H11  and H22  are components of the Irwin matrix.  Details and
descriptions of these parameters and the solution are given in Landis (2004).  Specific cases will be solved and compared to
ascertain the effects of the energetically consistent boundary conditions and especially the effects of electrical discharge within
the crack.

First, for comparison to the impermeable and “exact” boundary conditions appearing in the literature it will be assumed that the
discharge field is extremely large such that Ed → ∞ .  Figure 1 plots results for the energy release rates for all three boundary
condition types.  The values for the material properties used to generate the results shown in Figure 1 are characteristic of PZT-
5H.  Note that the total and crack tip energy release rates are equal for the impermeable and energetically consistent boundary
conditions, but these two quantities differ for the “exact” boundary conditions.   Figure 1 illustrates a number of interesting
features of this problem.  First, for the modest applied stress level of 10-MPa the difference between the crack tip energy
release rate and the total energy release rate for the “exact” boundary conditions that are so prevalent in the literature is
significant over a wide range of D −ωs .  Furthermore, the simple fact that these two quantities differ, regardless of the
magnitude of the difference, is unappealing from a theoretical perspective.  It is also interesting to note that both the “exact”
and energetically consistent boundary conditions yield energy release rates significantly higher than the energy release rate for
the impermeable boundary conditions.  This feature arises because the existence of cracks in the presence of electric fields
tends to be a high-energy state and hence electric fields tend to retard crack growth and the energy released during crack
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Figure 1.  Energy release rates for a Griffith crack in a
linear piezoelectric solid.  The properties used for these
calculations are those reported for PZT-5H. These results
are valid for both polar and non-polar materials.

Figure 2.  The effects of electric discharge on the energy
release rate using the energetically consistent boundary
conditions.
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growth.  This retardation process is maximized for the impermeable boundary conditions, but reduced for the “exact” and
energetically consistent boundary conditions where electric fields can permeate through the crack gap.

One final observation from the solutions presented in Figure 1 is that the electric field in the crack gap is much larger than the
level of electric field applied to the solid.  This feature of the solution, along with experimental observations of discharge in
crack gaps, is the motivation to study the effects of electrical discharge on the energy release rate for this system.  Figure 2
plots the results for the energy release rate versus the applied electric displacement for the energetically consistent boundary
conditions for an applied stress level of 20-MPa and various levels of the discharge field Ed .  The most significant observation
illustrated on Figure 2 is that electric discharge tends to reduce the retarding effects of electric field, thereby increasing the
energy release rate.  Also, note on Figure 2 that solutions for the energy release rate during electrical discharge drop smoothly
and continuously to zero.

4. Discussion
This work has been motivated primarily by McMeeking's observation, McMeeking (2004), that the so-called "exact" electrical
boundary conditions that are prevalent in the literature give rise to a discrepancy between the total and crack tip energy release
rates in a cracked piezoelectric body.  Such a discrepancy is objectionable from a theoretical perspective.  To address this
problem, energetically consistent electromechanical boundary conditions for cracks have been derived.  These boundary
conditions were derived based on the following assumptions.  (1) The energy of the cracked body can be computed using its
undeformed configuration.  (2) When the crack opens electric fields can permeate the crack medium and electrical energy can
be stored within the crack.  (3) The energy stored within the crack medium can be computed from the deformed configuration
of the cracked body.  (4) Electric field components within the crack medium parallel to the crack faces are negligible compared
to the electric field normal to the crack.  Evidently, assumptions (1) and (3) are in contradiction with one another since the
analysis of energies is mixed between deformed and undeformed configurations.  However, these assumptions are consistent
with those used for the "exact" boundary conditions.  Furthermore, a proper resolution to this inconsistency would require a full
nonlinear, large deformation kinematics analysis of the problem.  Instead, in this work, assumptions (1)-(4) are taken as a
starting point and the energetically consistent crack boundary conditions are derived by equating the weak statements of two
boundary value problems; one which models the volume of the crack gap explicitly and one that models the crack gap through
the surface tractions and charges that it applies to the cracked solid.

The primary results of this paper are the energetically consistent boundary conditions given by Equations (1.4)-(1.7).  These
boundary conditions imply that cracks in electromechanical materials not only sustain electric field and electric displacement,
but also apply mechanical traction to the surrounding material.  This feature of mechanical forces arising due to electrical
effects is common in finite deformation analyses of electromechanical materials and is usually termed a Maxwell stress. The
specific example of a Griffith crack in a poled linear piezoelectric solid was used to demonstrate that the energetically
consistent boundary conditions do in fact resolve the discrepancy between the crack tip and total energy release rates.
Furthermore, the effects of electrical discharge on the energy release rate was ascertained and shown to reduce the retarding
effects of electric fields on crack growth.
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