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ABSTRACT

Seismic radiation allows seismologists to probe the details of the rupture process during an ear-
thquake. Waves recorded in the vicinity of the fault are used to invert for the details of rupture using
a mixture of kinematic and quasi-dynamic methods. Seismic radiation is not only a tool to probe the
earthquakes, it is also the essential dissipative mechanism by which ruptures exchange energy with
the surrounding elastic media. Inversion has been used to study several earthquakes at relatively
long wavelength, extending these results to higher frequencies requires improved understanding of
the fundamentals of seismic energy balance which remain obscure, even if the fundamental theorems
were established by Kostrov 30 years ago. In this paper we examine the simplest possible earth-
quake model, a propagating 2D antiplane crack and compute energy balance in detail. We show
that energy can be expressed as simple integrals of energy release on the fault, that high frequencies
are radiated by fast changes in rupture velocity and in jumps and kinks of the rupture front. We
demonstrate that even if energy can be expressed as an integral of slip on the fault, it can not be
localized on the fault.

Introduction

In spite of considerable progress in understanding earthquake dynamics, there are still a
number of obscure point about elastic energy radiation and its role in controlling rupture.
Recent studies have suggested that apparent energy release rate as measure from seismic
radiation is of the order of several MJ/m?, a huge number that probably reflects the fact that
seismic rupture do not occur on a simple fault surface as modeled in laboratory experiments.
Recently, Ide (2002) and Favreau and Archuleta (2003) showed that total energy release rate
during the Imperial Valley and Kobe earthquakes was of the same order of magnitude as
radiated energy and strain energy released by those earthquakes. This seems to confirm,
the claim by Madariaga and Olsen (2001) that earthquakes propagate at an almost critical
level so that the Griffith criterion for shear rupture is barely satisfied. This may explain why
super-shear rupture is only observed in very special circumstances.

Radiated Energy

Kostrov (1964) defined radiated energy as :

ES = 7/ dt/UZAUZJ n; ds (1)
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integrated over a surface S that surrounds the fault VERY far from it. Here Acis the tensor
of stress change produced by the seismic source and uis the particle velocity in the far field
of the source. So that effectively one can use the far field in it.

The correct expression for radiated energy in terms of fault slip and fault stress was
given by Eshelby (1969) and Kostrov (1974), and has been used by Madariaga (1976), Ide
(1992),Freund (1989), Favreau et al (2003) and many others. Kostrov’s expression is :
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where FEis the total radiated energy, is the fault surface and 7 is the fault normal, Awu;is
the ith component of the slip vector across the fault and Acis the stress tensor change
produced by slip. This expression is remarkable in that it expresses total radiated energy as
a function only of changes in the state of stress and inelastic slip.

Very often this equation in the seismological literature this equation is integrated by
parts to obtain :

2 = P 0 P

where ois the TOTAL stress acting on the fault. Although they are equivalent, equations
(2) and (3) are very different and should not be used simultaneously in evaluating seismic
radiation. In expression (3) the first term is the TOTAL strain energy change while in (2) the
first term is just the self-energy change. Eshelby was the first to show that since the radiated
field does not depend on absolute values of stress, radiated energy should not depend on
absolute stresses either.

Recently Ide (2002) and Favreau and Archuleta (2003) used a version of (2) in order to
compute the radiation from several earthquakes for which slip on the fault had been com-
puted by inversion of near field seismograms. In these inversions. Although this inversion
technique is only valid at relatively low frequencies, the slip distributions are robust. From
the slip distribution a stress change field is computed so that expression (2) can be com-
puted term by term. Many authors have expressed doubts that one can decompose F;into
individual contributions by fault elements. We will examine this problem in detail in the
following.

Radiation from a simple antiplane fault

For simplicity I will study the semi-infinite mode III crack shown on Fig 1 that extends
along the negative z-axis and is in equilibrium for ¢ < 0. At ¢t = 0 rupture starts moving at
constant speed v, along the positive x axis. The stress intensity factor at the rupture tip at
x = 0 is noted K{ and the corresponding quasi-static energy release rate is Go = K3 /(2u).
Radiation from this semi-infinite fault can be computed by Kostrov’s (1966) solution for a
flat crack (see, e.g. Madariaga, 1977, 1984) or Adda-Bedia and Arias (2004) who studied
the more complex problem of radiation from a fault that kas a kink at the origin.

From Madariaga (1977) we know that rupture of the semi-infinite fault produces a shear
wave front with a particle velocity jump:
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u(r, 0,t) = H(t—r/B) (4)



at an observer situated at coordinates r, 6. Here p is the elastic constant and 3 the shear
wave speed. This is what seismologists call a far field solution, i.e. the dominating term as
r — oo. Since particle velocity is constant behind the rupture front in (2), the total energy
radiated by this fault is unbounded and the computation of seismic energy as defined by
Kostrov does not make sense.

2. Radiation from a finite mode III fault

In order to compute seismic energy we let the fault of section (1) run for a short length
Lalong the xaxis and then stops. When it stops it radiates a wave of the same form a (2)
but with rreplaced by Fraunhoffer’s approximation

r'=+/(z+L)?2+y2~r(1+L/r)
The far field wave generated by the finite rupture episode is then:
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Using (1) we can compute radiated energy exactly for this model. We get
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which gives after a change in the order of integration and use of (5):
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Radiated energy is the difference between the quasi-static and dynamic work of the stress
concentration K as it moves a distance L along the x axis.

We can now generalize (7) and write that total energy for an arbitrarily moving rupture
is

L
E, = /0 (Go(z) — G(v,z))dx (8)

a similar result was obtained by Freund (1989) by a modification of Kostrov’s equation (2).

Fault slip and energy distribution.

The most important question from a seismological point of view is whether (8) or one of its
variations can be used to back trace the source of energy from a seismogram to the fault.
We would like to know whether the energy observed at time ¢ at the observer comes from an
specific point on the fault. For displacement and particle velocity, this problem was already
studied in some detail by Bernard and Madariaga (1984) in the 3D case and by Madariaga
(1984) in 2D. Following these authors the field observed at time ¢ at an observer situated



at the cylindrical coordinates (r,6) comes from an isochrone, a curve on the fault for 2D
faults or a few isolated point for a 1D fault. If the latter problem can be solved, then the
computation of energy flow as a function of time and position can be computed.
Unfortunately, radiated energy can not be decomposed in the same way, because radiated
energy is averaged on the focal sphere and arrival times depend on the azimuthal angle and
distance. Thus, the computations by Ide (2002) and Favreau and Archuleta (2003) can be
considered as reasonable estimates of the contribution of points on the fault to total energy
balance, but they can not be decomposed into individual contibutions of different segments
of the fault, unless rupture history is well resolved. The main reason is that fault radiation is
not simply proportional to slip, it includes effects of diffraction (and refraction for in-plane
problems) by the tip of the fault and other geometrical or mechanical discontinuities.

Generalization

We presented above the solution for the motion of straight antiplane shear fault. Similar
results can be obtained for plane shear using the solution by Madariaga (1977) although
finding an expression similar to (7) is much more difficult. Recently Adda-Bedia and Arias
(2004) have found a general solution to the problem of Fig 1 where the fault starts moving
along a kinked fault. using their results Adda-Bedia and Madariaga (in preparation) found
that the expression (7) is still valid if the stress intensity factor is replaced by a modified
value that takes into account the effect of the kink on the stress field in the vicinity of
the crack tip. Extension of these results to 3D ruptures is much more difficult, except when
rather strong kinematic assumptions are made as in the case of a circular crack propagations
at constant speed (Madariaga, 1976; Ide, 2002)

Conclusions

We have shown that seismic radiation can be computed exactly from the slip change that
occurs on the fault. There are several important caveats that have to be carefully considered,
but in principle at least the computation is feasible. The main difficulty is not so much
computing energy, but identifying the place on the fault where energy comes at certain
time. This requires solving a non-linear back-projection problem when rupture velocity is
known for every point on the fault. In reality, determining the rupture velocity is a much
more difficult problem that computing the distribution of slip, so that I expect that much
better rupture invert-ions will be required before we can fully identify the origin of radiation
on the fault.
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Fig 1. Simple model of a planar antiplane fault that suddenly extends along the z-axis at
constant speed v,. This is one the rare crack radiation problems that can be fully solved exactly



