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ABSTRACT 

Corrosion is a major concern to the structural integrity of aging aircraft structures. The effect of corrosion on 
the damage tolerance ability of advanced aluminum alloys calls for consideration of the problems associated 
with the combined effect of corrosion and embrittling mechanisms. The present paper focuses on the 
observed corrosion-induced embrittlement of 2024 alloy and tries to answer the key question on whether the 
observed embrittlement is attributed to hydrogen uptake and trapping in the material. The experimental 
procedures involved: (1) accelerated corrosion testing (EXCO), (2) microstructural investigation of the 
evolution of corrosion damage (3) hydrogen measurements (4) fractographic analysis of tensile specimens.  

Corrosion damage in the alloy initiates with pitting and develops to a network of intergranular 
corrosion leading to exfoliation of material. Hydrogen is produced during the corrosion process and is being 
trapped in distinct energy states, which correspond to different microstructural sites. These traps are activated 
and liberate hydrogen at different temperatures. In alloy 2024, four traps T1 to T4 were identified. Trap T1 is 
considered to be a reversible trap, which liberates hydrogen continuously at low temperatures. Traps T2, T3 
and T4 saturate with exposure time and are considered to be irreversible. The hydrogen front advances with 
the corrosion front, so hydrogen penetrates in the material through the intergranular paths generated by the 
corrosion process. Then hydrogen diffuses further in the material establishing a hydrogen affected zone 
beneath the corrosion zone. Removal of the corrosion layer (equal to the depth of attack) leads to complete 
restoration of yield strength but only partial restoration of ductility. Removal of the corrosion layer and 
heating above the T4 activation temperature for hydrogen desorption (to activate all traps) leads not only to 
complete restoration of strength but also to complete restoration of ductility. Fractographic analysis shows 
the existence of a quasicleavage transition zone between the intergranular corrosion zone and the ductile 
corrosion-unaffected material. This quasicleavage zone is embrittled by hydrogen diffusion and trapping. 
These results constitute evidence of hydrogen embrittlement in Al-alloy 2024. 

Today’s aircraft design and maintenance follow the damage tolerance methodology. The present 
paper sheds light at the degradation of ductility due to the corrosion-induced hydrogen embrittlement, which 
reduces the damage tolerance of the structure. These findings are particularly important for the so-called 
“aged aircraft”, which has exceeded or is near the operational lifetime, but it is still operated by the airlines. If 
it is decided to continue the operation of such aircraft, a re-determination of lifetime based on the locally 
degraded material properties appears essential.  
 

1  INTRODUCTION 
The structural integrity of aging aircraft structures can be affected by corrosion. As the time of an 
aircraft structure in service increases, there is a growing probability that corrosion will interact 
with other forms of damage, such as single fatigue cracks or multiple-site damage. The aging 
aircraft may have accumulated corrosion damage over the service life and its residual strength 
depends on possible degradation stemming from corrosion-induced embrittling mechanisms. One 
characteristic example where failure was attributed to multi-site damage (MSD) has been the 
Aloha Airlines accident in 1988. Damage was attributed to growth and linkage of multiple fatigue 
cracks, emanating from rivet holes. Recent investigations in the Hellenic Aerospace Industry 
(HAI) on firefighting planes has also shown considerable corrosion damage around rivet holes.  

There are two key questions regarding this issue: (1) Is there a corrosion-induced 
degradation of ductility, which in turn degrades damage tolerance and the residual strength of 
aerostructures? And (2) What is the underlying corrosion-induced embrittling mechanism? The 



answer to the first question has been given by a long series of experiments, conducted at the Univ. 
of Patras [1-3] involving mechanical testing of precorroded (in EXCO) alloy 2024. It was shown 
that (i) degradation of ductility and fatigue life increases with corrosion exposure time and (ii) 
removal of the corrosion layer restores strength but not ductility. These results indicated the 
operation of a bulk corrosion-induced embrittlement mechanism. The researchers at the Univ. of 
Patras pointed that hydrogen embrittlement might be the underlying mechanism.  

Other researchers have also considered hydrogen as an embrittlement mechanism in Al-
alloys. Speidel [4] reviews recent results, mainly for Al-Mg-Zn alloys. Studies by Scamans et al. 
[5] of Al embrittlement in humid air, point to the major role of hydrogen. In particular, the 
intergranular crack path and the reversibility of the phenomenon (recovery of ductility after 
degassing) support a hydrogen, rather than an anodic dissolution, mechanism. Also, Scamans and 
Tuck [6] measured hydrogen permeability and stress corrosion resistance of the Al-Mg-Zn alloy, 
as functions of quench rate and aging treatment, and found similar trends. Regarding hydrogen 
trapping, it has been shown [7, 8] that lattice defects (vacancies, dislocations, grain boundaries) 
and precipitates provide a variety of trapping sites for diffusing hydrogen.  

Hydrogen traps have mechanistically been classified by Pressouyre [9] as reversible and 
irreversible, depending on the steepness of the energy barrier needed to be overcome by hydrogen 
to escape from the trap. Thermal desorption has been successfully used to study hydrogen 
partitioning in pure cast aluminum and in Al-Cu and Al-Mg2Si alloys [8]. Accelerated corrosion 
tests were recently used [10] to characterize corrosion and hydrogen absorption in alloy 2024. In 
[11] hydrogen evolution from the corroded specimen of Al alloy 2024 was systematically 
measured as a function of temperature. The existence of multiple trapping states was verified and 
the quantity and evolution pattern of hydrogen was discussed. In the present work hydrogen 
uptake and trapping is linked to material embrittlement. 
 

2  EXPERIMENTAL 
The material used for the present study was alloy 2024-T351 supplied in thicknesses 1.6-3.0mm. 
Exfoliation corrosion testing was performed according to ASTM specification G34-90 [12]. It 
included exposure at 25°C, for 24 hours in a solution containing 234g NaCl, 50g KNO3 and 6,3ml 
concentrated HNO3 (70%wt) diluted to 1 L of distilled water. Exposure times in the EXCO 
solution ranged from 15 min to 96 hours. The early stages of corrosion (up to 4 hours) were 
studied by AFM, while the later stages by SEM and metallographic sectioning. An in-house 
thermal desorption – gas chromatography system was employed in order to measure hydrogen 
being trapped in the alloy during corrosion. A constant heating rate was applied to the corroded 
alloy and the amount of hydrogen evolved was measured as a function of temperature. 
Microhardness testing versus temperature simulating the thermal desorption spectrum of hydrogen 
trapping was performed, and was set in perspective with the thermal desorption history of trapped 
hydrogen. Hydrogen profiling was performed by hydrogen measurements after successive material 
removal. Tensile testing of corroded specimens has been reported in [1, 13] and the results are 
adopted here. Fractography of tensile specimens was performed in order to identify mode of 
fracture. 
 

3  RESULTS AND DISCUSSION 
Corrosion in this alloy starts in the form of pitting. With exposure time pits become deeper and pit 
clustering takes place. At 2-4 hours a type of pit-to-pit interaction initiates the process of 
intergranular corrosion. This type of corrosion has two major consequences. The first is the  



            
0 100 200 300 400 500 600

-0,5
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0
5,5
6,0
6,5
7,0
7,5

 2Hours
 4Hours
 8Hours
 12Hours
 24 Hours 
 48Hours
 96Hours

µg
H

2/
m

in

Temperature, (oC)

T1 T2

T3

T4

Figure 1: Alloy 2024, 96 hours EXCO exposure, 
intergranular corrosion leading to 
exfoliation. 

Figure 2: Desorption of H2 in specimens of 
aluminium alloy 2024-T3 for 
continuous heating up to 600 °C. 

 
exfoliation of grains from the surface of the alloy. The second is the opening of paths for the 
corrosion solution to penetrate in the material interior (FIGURE 1). It appears that this is the way 
for hydrogen to reach deep in the material. Hydrogen is generated during corrosion. Then it 
adsorbs on the surface and it diffuses in the alloy, creating a diffusion zone adjacent to the 
corrosion zone. 

It was found that hydrogen is being trapped in distinct energy states, which correspond to 
different microstructural traps that are being activated at different temperatures (FIGURE 2). The 
higher the temperature the stronger the trap. In 2024 alloy, four traps T1 to T4 were identified. The 
quantity of hydrogen liberated from these traps is shown in FIGURE 3. The low temperature trap 
T1 is the weaker reversible trap and corresponds to hydrogen residing in interstitial sites. 
Microhardness measurements, performed after subjecting the material to the same thermal cycle 
used for the hydrogen measurements showed that the corroded material becomes softer. This 
behaviour is in accordance with theories of hydrogen-induced softening stemming from 
interaction of hydrogen and dislocations [14] (FIGURE 4). Evolution of hydrogen from the high 
temperature trap T4 coincides with dissolution of the strengthening phase, as confirmed by 
computational thermodynamic calculations. This indicates that T4 hydrogen might be trapped in 
the strengthening phase. 
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Figure 3: Amount of hydrogen desorpted from the four trapping states (T1-T4) as a function of 

corrosion exposure time. 
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Figure 4: Microhardness profile versus tempera-
ture for alloy 2024. 
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Fig.6: The results of mechanical testing represented as percentages of the respe
values [13]. 
 

Another key question answered by these experiments was how deep in 
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an elongation increase to 66% of the reference value. However, part of the hydrogen zone still 
remains. The heating of the alloy to 495oC (at the T4 state) removes all hydrogen from that zone 
by desorption and restores all ductility back to the original value. Fractography of the tensile 
samples (FIGURE 7) showed that below the intergranular fracture zone at the surface, which is  
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Removal of hydrogen by heating restores all ductility. These results constitute evidence 
of hydrogen embrittlement in Al-alloy 2024. 
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