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ABSTRACT

The numerical analysis of brittle materials is characterized by softening behavior associated with
strain localization in the post-cracking regime. In the Extended Finite Element Method (X-FEM),
which is used in this paper, discontinuities are introduced into the finite element approximation
using the Partition of Unity property of the standard finite element shape functions. The analysis
of crack propagation using the X-FEM crucially depends on the crack growth criterion [4], which
determines whether a crack is going to propagate and if so in which direction. In this paper an
energy based criterion for the prediction of the propagation direction is introduced. The basic idea
of this criterion is to calculate the propagation direction by maximizing the global energy release
rate of the respective structure. Therefore an additional global degree of freedom ¢ is introduced
which is associated with the angle of the crack tip segment. To this end, a C3-continuous crack tip
function is proposed for the approximation of the displacement field in the vicinity of the crack tip.
The crack propagation direction is then obtained by the solution of the global coupled equation
system defined by the stationary point of the total potential IT;o:. To illustrate the performance of
the method a simple numerical example is presented. So far the proposed crack growth criterion
is restricted to linear elastic fracture. In contrast to crack growth criteria based on Linear Elastic
Fracture Mechanics the proposed criterion is also suited for the modeling of cohesive cracks.

1 INTRODUCTION

For the numerical analysis of structures made of brittle materials such as concrete adequate
methods for the numerical representation of cracks are required. One of the most promising
approaches is the representation of cracks as surfaces of discontinuous displacements within
the respective finite elements. In the Extended Finite Element Method (X-FEM), which is
used in this paper, discontinuities are introduced into the finite element approximation using
the Partition of Unity property of the standard finite element shape functions. Therefore,
and in contrast to other discrete crack models, cracks are not limited to element boundaries
but can be located arbitrarily in the finite element mesh. The method was first proposed
by Moks, DoLBOowW & BELYTSCHKO [1] and has been extended recently for the modeling
of cohesive cracks [2, 3].

The analysis of crack propagation using discrete crack models crucially depends on the crack
growth criterion. After crack initiation, at each time step it has to be checked whether a
crack is going to propagate or not. If crack growth is signalled it has to be determined
in which direction the crack will propagate. An incorrect prediction of the crack growth
direction leads to locking effects and therefore to unreasonable results. This phenomenon
has been reported previously in [4]. It was shown that crack growth criteria based on the



maximum principle stress direction do not seem to be generally applicable. In particular
for Mode I fracture biaxial tensile stress states around the crack tip may occur, which lead
to a wrong prediction of the crack path. This situation may be improved by increasing
the resolution of the stress field in the vicinity of the crack tip. However, the problem of
severe mispredictions of the crack path cannot be completely eliminated. In the context of
Linear Elastic Fracture Mechanics various crack growth criteria exist which, according to the
experience of the authors, yield excellent results. Nevertheless, a consistent transformation
of these criteria to the modeling of cohesive cracks is difficult. Hence, in this paper an energy
based criterion for the prediction of the propagation direction of cracks in the context of
the X-FEM is proposed. Although the applications of the criterion presented in this paper
are restricted to linear elastic fracture problems, its extension to the modeling of cohesive
cracks is straightforward.

The main idea of this criterion is to calculate the propagation direction by maximizing
the global energy release rate of the respective structure. This condition is fulfilled by the
propagation angle that leads to a stationary point of the total potential Il;,;. In the presented
formulation an additional global degree of freedom ¢ is introduced, which is associated with
the angle of the crack tip segment. The angle ¢ is then computed from a global coupled
system of equations using the necessary and sufficient condition for the stationarity of Il;,;
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where u® consists of the regular and the enhanced degrees of freedom.

Section 2 contains an overview of the used Extended Finite Element Method. In Section 3
the algorithmic formulation of the energy based crack propagation modeling is described. A
numerical example is presented in Section 4 to demonstrate the performance of the method.
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2 EXTENDED FINITE ELEMENT MODEL

In this section a concise description of the used Extended Finite Element Method is given.
The description is focused on the aspects relevant for the formulation of the energy based
crack propagation criterion which is presented in Section 3. For a more detailed and complete
description of the Extended Finite Element Method we refer to [1, 5].

2.1 Kinematics

Consider a body B whose domain € is separated into two parts Q1 and Q~ by means of a
localization surface Js{2. The displacement field u of this body can be decomposed into a
continuous part @ and a discontinuous part %

u(z) =u(z)+a(x), Ve € Q, with a(x) = Ss(z)u(x), (2)
where @ and 4 are continuous functions in the domain Q and Sg is the Sign function
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In the proposed model the approximation of the function @ is enhanced by the continuous
part of the crack tip function as shown in Subsection 2.2. The Sign function Sg can be
expressed in terms of the Heaviside function Hg centered on the localization surface 0s{2

Ss() = 2 Hg() — 1. (4)



The geometrically linear strain field € is obtained by taking the symmetric gradient of u
according to Equation (2)
e(u) = Viu = Va4 Sy Vi + 2 (2 @ n)%4s . (5)
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The singular part of Equation (5) is expressed in terms of the Dirac-delta distribution using
the classical result for the gradient of the Heaviside function VHg = ndg, where n is
the unit normal vector on the surface of discontinuity. Since the presented formulation is
restricted to linear elastic fracture the singular part of the geometrically linear strain tensor
can be neglected in the following.

2.2 Enhanced displacement approximation

In the X-FEM the Partition of Unity Method [6] is used to locally enhance the displacement
approximation where a crack has opened. In the presented formulation not only the Sign
function but also a crack tip function Gg shown in Figure 1b is proposed to enhance the
approximation of the displacement field in the cracked solids:
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6 and r are the local polar coordinates at the crack tip and [ is a length scale typically equal
to the length of a crack segment. Using a crack tip enhancement function, crack tips do not
have to be located on element boundaries, but can be located arbitrarily in the finite element
mesh. Except for the jump across the localization surface, the enhancement function Gy is
C3 continuous in the domain . Therefore the spatial derivatives of Ggs do not contain a
singularity at the crack tip. This enables a consistent linearization of the Euler-Lagrange
equations(see Section 3).

As mentioned above, the function Gg is discontinuous across the localization surface 9s{2.
Similar to the discontinuous part of the displacement field the function Gg is decomposed
into a product of the Sign function Ss and the continuous function G

Gs = Ss|Gs| = Ss G%. (7)

The reason for this decomposition is to provide a consistent notation in the following sec-
tion. Using standard finite element shape functions as a partition of unity, a finite element
approximation which includes all three parts, the standard finite element approximation,
the Sign function Sg and the crack tip enhancement function Gg can be written as

u = Z N;iui" + Ss(p) ( Z N;uf® + G5(p) Z N; u§t> , (8)
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where u{" are the regular degrees of freedom, u{° are the enhanced degrees of freedom
associated with the Sign function Sg, u{° are the enhanced degrees of freedom associated
with the crack tip enhancement function Gg and ¢ is the degree of freedom associated with

the angle of the crack tip segment. The formulation of S5 and G’¢ with respect to ¢ will be
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Figure 1: Nodal enhancement: a) enrichment strategy at the crack tip; b) crack-tip enhance-
ment function Gg

explained in Section 3. As shown in Figure 1a all elements which are located in the circular
area around the root of the crack tip segment are completely enhanced by the crack tip
enhancement function Gg. The radius of the circle should not be less than the length of
the crack tip segment to avoid a change of the enhancement during an iteration. All nodes
whose support is cut by a crack and are not already enhanced by the crack tip function are
enhanced by the Sign function.

3 ENERGY BASED MODELING OF CRACK PROPAGATION

The basic idea of energy based crack propagation modeling is to calculate the propagation
direction by maximizing the global energy release rate of the structure. In this Section the
main ingredients of this formulation are summarized. In particular, the introduction of the
additional global degree of freedom ¢ associated with the direction of the crack tip segment
and the consistent linearization of the field equations are described.

3.1 Introduction of the global degree of freedom ¢

To account for the global degree of freedom ¢ the enhancement functions Ss and Gg have
to be formulated in terms of ¢. The Sign function Sg at the crack tip segment is defined as

Ss(x,p) =sign(d(z,¢))  with  d(z,¢) = n(p) (¢ - zcr), 9)

where x., are the coordinates of the root of the crack tip segment which are invariant with
respect to . Similar to the Sign function the local polar coordinates at the crack tip r, 8
can be formulated in terms of ¢ and and x which leads to Gs(x,¢). As mentioned above
the chosen crack tip enhancement function G'g is C3 continuous in the domain  and thus
the derivatives of Gg are well defined. The first and second derivative of Sg with respect to
o lead to

0Ss od 0*Ss  0d od 0%d
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where dg is the Dirac-delta distribution centered on the localization surface.




3.2 Finite Element Formulation

Inserting the geometrically linear strain tensor (5) into the principle of the minimum of the
total potential, neglecting body forces, leads to

Htot = Hz’nt + Hezt = stat. with Hezt - //a .t dr (11)
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As mentioned before the formulation is so far restricted to Linear Elastic Fracture Mechanics.
Since for linear elastic fracture stress free crack faces are assumed, the singular part of
the strain tensor can be neglected. Nevertheless a consideration of the singular part is
straightforward. For reasons of simplicity it is assumed that the enhanced part of the
displacement field is zero where boundary conditions are imposed. Therefore the enhanced
part of the displacement field does not affect Il.,;. Taking the first and second variation
of II;,; and considering the derivatives of Sg given in Equation (10) together with the
integration rules for the Dirac-delta distribution and its derivative leads to the coupled
stiffness matrix and the internal load vector obtained in the general format

K’a,ﬁ Kﬁ,ﬁ, K’E,cp f’l—_t
K =] Sym. K4 gle | fim=| % |- (12)
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4 NUMERICAL EXAMPLE

The numerical example investigated in this section consists of a square shaped panel as shown
in Figure 2. An initial vertical crack with a length of L/5 and a crack tip segment with the
length L/10 are assumed. Two different loading conditions are investigated, the first loading
condition is a pure tensile load (u, = 0), the second is a mixed mode loading condition
(uy = wp). Both loading conditions are investigated using two different finite element
meshes, a regular mesh consisting of 81 four-node finite elements and an unstructured mesh
consisting of 64 four node finite elements. For the pure tension test the initial propagation
angle ¢ was set to —10° and for the mixed mode test it was set to —30°.

Figure 3 illustrates the convergence behavior for both finite element discretizations. In all
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Figure 2: Square shaped slab: a) loading conditions, initial crack and definition of ¢; b)
regular and unregular finite element mesh
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Figure 3: Square shaped slab: a) rate of convergence for mode-I loading conditions; b) rate
of convergence for mixed mode loading conditions

cases an (almost) quadratic rate of convergence was obtained. The calculated propagation
angle for the pure tension test finally was obtained as ¢ = 0° for the regular mesh and as
o = 0.5° for the unregular mesh. For the mixed mode test a propagation angle of ¢ = —21°
for the regular and ¢ = —21.6° for the unregular mesh was computed.

5 CONCLUSION

In this paper an energy based criterion for the prediction of the propagation cracks in quasi-
brittle materials was presented in the context of the Extended Finite Element Method. In the
proposed formulation the propagation angle is considered as an additional global degree of
freedom which is calculated by solving the global coupled system of equations associated with
the maximum energy release rate. This method was successfully applied to the propagation
of non-cohesive cracks under mode-I and mixed mode loading conditions using structured
and unstructrured meshes. However, the proposed criterion holds for cohesive as well as for
non-cohesive cracks. Hence, future work will be concerned with the extension of the method
to cohesive cracks and with modifications to increase the radius of convergence using a
stabilized NEWTON algorithm.
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