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ABSTRACT 

 
A simple analytical and design oriented procedure for crack analysis in the soil is presented in this paper. The 
cracks appear as a result of the moisture decrease and the shrinkage of the soil. All relevant parameters, such 
are Stress Intensity Factors (SIF) at the crack tip and the displacements of the crack faces, are found using 
Fracture Mechanics approach. The problem of the crack reinforcement is also considered. The geotextile is 
used as reinforcement. The force in the geotextile during the time is obtained for the different values of the 
geotextile stiffness. This parameter is sufficient to determine the geotextile characteristics. 
Cracking and its prevention is very important for the pavement, or highway design. For the purpose of the 
engineering application the simple, analytical solution, will be presented. The paper considers infinite half 
space with uniform initial distribution of moisture. The diffusion of moisture will commence due to sudden 
change of boundary condition at the free surface when the value of moisture becomes zero. Mathematically 
the problem is defined with the  well known diffusion equation. The solution of this equation, for prescribed 
initial conditions, is given by the error function. Once the moisture distribution is determined the stresses in 
the soil can be obtained. Due to stresses the soil, like clay will crack. According to Linear Fracture 
Mechanics, the problem of the crack can be solved as the superposition of the two governing problems. First 
problem is the half-plane without crack and the second is soil with the crack loaded by far field stresses at 
crack faces. Also for the sake of practical application the nonlinear distribution of stresses is replaced by 
linear distribution. This approximation is obviously on safe side. From handbooks of stress intensity factors 
KI can be easily obtained. In literature results of soil fracture toughness can be found. Soil fracture toughness 
KI

C is the critical stress intensity factor. Using Griffith criterion KI = KI
C it is possible to determine whether 

the crack will propagate or not, or the size of the crack can be determined for prescribed far field stress. 
In the pavement or highway design the geotextile reinforcement is usually used to prevent cracking. In this 
paper the same procedure as in Carpinteri’s and Sumarac and Krajcinovic’s papers will be used. By using 
Fracture Mechanics it is possible to determine the geotextile characteristics needed to prevent further 
cracking.  
 

1 INTRODUCTION 
It is well known that some sort of soil, like clay, show quite different behavior when they are 
saturated with moisture (water) than when they are dry. Due to moisture exchange (decrease) these 
types of soil shrink, causing the tensile stresses, and then crack. Cracking and its prevention is 
very important for the pavement, or highway design. This paper intends to analyze this problem, 
using Fracture Mechanics. For the purpose of the engineering application the simple, analytical 
solution, will be presented. 
 

2 STRESSES IN THE SOIL DUE TO MOISTURE DIFFUSION 
Consider the infinite half space, shown in Figure 1, with the uniform initial distribution of 
moisture C(x,t=0)=C0 .  



 
Figure 1: Infinite half-space with the initial moisture distribution 

 
The diffusion of moisture will commence due to sudden change of moisture at the free surface to 
the value C=0. The problem of moisture distribution is then defined with the diffusion equation: 

t
CCDm ∂
∂

=∇ 2 .                   (1) 

The initial and boundary conditions are: 
 
C = C0, for  t=0;  x ≥ 0 and C =0, for t>0;   x = 0.               (2) 

In the eqn  (1) Dm is the overall diffusion coefficient. In this paper we will replace very complex 
three phase medium (soil, water-moisture and air) with a continuum characterized with the overall 
constants. Also the stresses in the paper will represent effective stresses (stresses in the soil). In the 
eqn (2) C0  represents, and hereafter will be referred to as, the increment of the moisture decrease 
(∆C) because in the soil it is impossible to have zero moisture. The solution of the eqn (1) is 
(Carslaw and Jeger [2]): 
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where erf, stands for the error function. Internal stresses, induced in the soil by the moisture 
distribution given by eqn (3) in the case when the changes of temperature are negligible are, (Sih 
et al. [3]): 
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The stresses due to moisture exchange are shown in Figure 2. In the above formula β is moisture 
shrinkage coefficient. It should be mentioned that for infinite time (t→∞) stress is everywhere 

βσ 0ECp = /(1-ν) = const and it represents its maximal value. 
 

3 SOIL CRACKING 
Soil like clay, will crack due to stresses given by eqn (4) and shown in Figure 2. Let us consider 
the crack of size a. According to Linear Fracture Mechanics, the problem of crack under the 
stresses shown in Figure 2 can be obtained as the superposition of the two governing problems. 



 

 
 

Figure 2: The stress distribution due to moisture change 
 
The first problem is the half plane without crack, and the second is the soil with the stresses shown 
in Figure 2 applied at the crack faces. For the sake of engineering application , we are replacing 
the exact distribution of the stresses (given with the error function represented by eqn (4)) with the 
linear distribution. This approximation is on the conservative side because the area of the linear 
distribution of stresses is larger if compared with exact value shown in Figure 2. This 
approximation is easier because it can be integrated analytically. In that case, using Tada [7] it is 
obtained: 
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In the expression (5), KI is the Stress Intensity Factor (SIF), for the Mode I of the crack 
deformation. To obtain formula (5), the superposition is also taken into account for constant and 
linear distribution of stresses. Once the SIF is known, using Griffith criterion: 
 

C
II KK =                     (6) 

it is possible to determine whether the crack will propagate or not. In the above formulas KI
C is the 

critical stress intensity factor. There is the way to obtain critical stress intensity factor for Mode I 
KI

C, see for example Siriwardane and Layne [4]. 

  
4 REINFORCED CRACKS 

In the pavement or highway design the geotextile reinforcement is usually used to prevent 
cracking. In this paper the same procedure as in Carpinteri [5] and Sumarac and Krajcinovic [6] 
will be used. By using Fracture Mechanics it is possible to determine the geotextile characteristics 



needed to prevent further cracking. In the following approximate analytical procedure, the 
geotextile (bond) will be taken with the finite width (a-d) to avoid infinite displacement at the 
place of the geotextile. Also we will assume the perfect bonding between the reinforcement and 
the soil, i.e. we will neglect possible geotextile-soil interface debonding. Taking Bueckner [1] 
procedure, for the partially loaded crack at the place of geotextile, it is obtained: 
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It is easy to check the expression (7). For d/a = 1.0 (there is no loading) KP =0.008 which is very 
close to the exact value KP =0, and for d/a = 0 (fully loaded crack) KP =1.1215, which is the exact 
value. In the above formula, P is still the unknown stress in geotextile. 

To determine the displacement at the place of geotextile, the Castigliano’s theorem will be used. 
Fictitious force Q would be applied at the same point. Then the total potential energy is calculated. 
After that, the governing displacement by differentiating of the potential energy with respect to 
fictitious force is obtained. From Tada [7] the SIF due to fictitious force Q is: 
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For d/a = 0.9 from the expression (7) and (8) it is obtained: 
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The total energy is then: 
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By differentiating (10) with respect to Q, using (9) and substituting into obtained result Q=0, it 
follows: 
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Once the displacement (11) is known, due to stress P, the procedure to determine the 
reinforcement dimensions is obvious. Using compatibility conditions, as in Sumarac and 
Ktajcinovic [6], it is obtained: 
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From eqn (12) it can be seen that the stress in the geotextile is increasing function in time. The 
stress of geotextile increases with its rigidity (k) and reaches its maximum value if k→∞ i.e. totally 
rigid bond, and vice versa. Once the stress in the bond given by (12) is determined the total SIF is: 



1
10 XKKK III −=                   (13) 

where KI
0 is given by (5) and KI

1 by the expression (7) for P=1. Substituting (5), (7) and (12) into 
(13) for d/a=0.9, it follows: 
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Te expression (14) represents SIF of the reinforced crack. Its values are plotted in Figure 3 during 
the time, for d/a=0.9 and for the different values of the stiffness ratio E/ka(1-ν2). 

 
Figure 3: SIF for the reinforced crack during the time for the different values of E/ka 

 

It is seen that SIF is increasing function in time. Also the decrease of stiffness of geotextile causes 
the increase of SIF. Taking into account (6), one can choose characteristics of geotextile (ratio 
E/ka(1-ν2)) and then from (14) determine what would be the size of crack a for t→∞ . On the other 
hand, by choosing the size of the maximum crack length a,  the characteristics of the geotextile 
would be determined. This approach leads to the optimization of the whole structure.  
 

5 NUMERICAL RESULTS AND CONCLUSIONS 
The expression (12) can be written in the dimensionless form: 
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where are: 
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For ∞== tt , especially interesting in the application, for E/ka(1-ν2)=0 (rigid bond) and for 
E/ka(1-ν2)=1.0,  from (15) it is obtained: 

25.4,68.15 11 == XX                                 (17) 

respectively. In the case of the clay, governing constants are: 

β = 0.001 (1%); ν = 0.03; E = 30000 KN/m2 and for C0 = 10%            (18) 

where, as stated earlier, β is shrinkage coefficient of the soil, ν  is the Poisson’s ratio, E -  Young’s 
modulus and C0=∆C is the moisture decrease. From (18), (17) and (16) the stress obtained in the 
geotextile for the infinite time is: 

X1 = 6720 kN/m2, X1 = 1821 kN/m2                               (19) 

for the infinitely rigid bond (E/ka(1-ν2)=0) and for E/ka(1-ν2)=1.0 respectively. The infinitely 
rigid bond is unreal but the other one with characteristics E/ka(1-ν2)=1.0 is within the usual range 
for the often used geotextile. In that case, the force in the geotextile is, for the crack size a=0.5m, 
X1*0.05 = 91 kN/m’, while the displacement at the place of the geotextile is X1/k = 0.03m. From 
the above explained numerical calculations it is seen that the results are in the expected domain. 
They are obtained by a very simple approximate and analytical procedure suitable for everyday 
engineering application. 
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