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ABSTRACT 

Several variants for the stress-state calculation were considered on the basis of the FEM analysis to 
optimize the cruciform specimens sizes for tests under biaxial cyclic loads for through and semi-
elliptical cracks. The optimization was performed to locate in the center part of the specimen 
uniform biaxial stress-state for the specimen thickness 2mm, 5mm, and 10mm. The 3D analysis was 
used to calculate stress-state ahead of a crack tip for elliptically shaped crack.    
The fatigue crack growth simulation was performed on the basis of the new model, which used the 
size of the stretched zone performed under an overload to estimate the crack increment. The results 
of the crack growth simulation under the biaxial cyclic loads in this case are discussed.  

 
1 INTRODUCTION 

Many aircraft components in flight have experienced a biaxial stress-state resulting 
from external loads [1]. The fatigue crack growth in this case can be considered on 
the basis of the well-known criterion for the determination stress intensity factors 
from knowledge of plastic zone sizes when various external loads are applied to a 
component [2].  
The stress intensity equivalent factor, eK , has been introduced to describe fatigue 

crack growth in components on the basis of this criterion plus a synergistic 
approach [1], [3]: 
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There are iX parameters of external cyclic loads in eqn (1) that increase or decrease 

crack growth compared with the standard situation of a uniaxial tensile load with 
R =0 when the stress intensity factor IK has been determined. The equivalent stress 

intensity factor eK  is that which gives the same value of the fatigue crack growth 

rate. In the case of biaxial cyclic loads with various R -ratios it should give the 
same crack growth rate for the cyclic loading parameters 1,1 Rλ  and 2,2 Rλ . Hence 

the correction function is constant and equal to 1 under equivalent conditions. This 
indicates the possibility of describing the crack growth rate at different R,λ  values 



with one kinetic curve according to which the growth rate depends on the value of 
an equivalent stress intensity factor R,λ ),( RFIKeK λ= , where ),( RF λ  is 

dimensionless correction function of the stress intensity factor for various biaxial 
stress-state.  
The function correction ),( RF λ  in fatigue tests must to be determined under 

uniformly biaxial cyclic loads. That is why, the specimen sizes optimization was 
performed to realize the central part with a permanent λ -ratio within a several tens 
millimeters diameter on the basis of the finite element analysis. 
The semi-elliptic fatigue crack growth is not the same that discovery for the 
through crack [4]. It pierces through the specimen section in the depth direction and 
simultaneously growth by the specimen face. The specimen thickness for the crack 
size in the depth direction have to be enough for the crack size in several tens 
millimeters on the specimen surface. This situation can be exceeded for the thick 
specimen with the thickness more than 10mm. At the same time for the specimen 
grip ends have to be used more thickness that for the central part of the specimen to 
realize the enough level of the maximum principal stress of the regular cyclic loads. 
Fatigue crack growth after an overload depends on the overload level, principal 
stress level, stress intensity factor, −R ratio, specimen thickness and other 
parameters [1]. However, all well-known models of fatigue crack growth, which 
have been developed for the case of uniaxial overloads, can be expressed in the 
following form: 

)/( dNda = tÑ  0)/( dNda                                                                   (2) 

In the Eq.(2) the factor tÑ  includes all parameters influencing the growth rate after 

an overload as a result of cyclic loads interaction effects, and 0)/( dNda  correlates 

to the crack growth rate without an overload. The stress intensity factor eK  takes 

into account many factors influencing growth rate at a regular cyclic load, i.e. 
frequency, temperature, environment and others.          
But in the case of very frequently introduced overloads the dominant role for 
interaction effects of cyclic loads played the process of the plastic deformation 
material at the crack tip, which influenced the crack increment. The model of 
fatigue crack growth simulation under irregular biaxial cyclic loads has to use 
knowledge about this process. 
The paper presented FEM-analyses for cruciform specimens from Al-based alloys, 
which were used for cyclic loads tests under biaxial loads. Investigations carried 
out for regular and irregular biaxial cyclic loads of D16T and AK6 Al-alloys. A 
model of crack growth under cascade of cycles with overloads in the case of biaxial 
loads is proposed. The main idea of the discussed model is about dominant role of 
the plastic deformation process at a crack tip, which influenced the crack increment 
during overload.  



2 FEM OPTIMIZATION OF THE CRUCIFORM SIZES FOR THROUGH 
CRACKS 

To investigate the through fatigue crack growth under biaxial cyclic loads usually 
used cruciform specimens. One of the problems for specimen geometry to optimize 
specimen dimensions in such a way that a permanent biaxial stress state was 
obtained in the central part within as much diameter as possible. The second 
problem must be resolved for specimen thickness. It is need to be done for the case 
of the specimen cyclic loading under the biaxial tension-compression.  
Both problems were resolved on the bases of the FEM calculation for cruciform 
specimens of 1.5mm and 5mm in the thickness with different central notches used 
for through fatigue cracks growth investigations. An elastic stress analysis was 
carried out for the cruciform specimen using the general program for the finite 
element method-calculation ANSIS. Material’s constants of Young’s modulus, 
Poisson’s ratio and Yield stress are E = 70GPa , ν=0.3, 2.0σ =350MPa, 

respectively for D16T Al-alloy. 
High stress region was built up in the central region of the specimen by reducing 
the thickness for crack not to originate at the corners. Then stress analysis was 
carried out for the cruciform specimen with t =5mm in thickness at the center by 
means of the three dimensional elastic FEM. The eight node-isoparametric 
elements of which numbers are 604 and 1014 in the mesh element and the node 
were used. The stress analysis was performed for the specimen of t =5 mm under 
the tensile equi-biaxial stress condition of 21 σσ = = 100MPa, where 21 σσ =  are 

the stresses applied at the grip ends in the X-and Y- directions in Fig.1, a. The 
similar calculation was performed for the specimen of t =1.5 and 2mm under the 
tensile equi-biaxial and the tension-compression stress condition of 1σ = 56MPa. 

The results of calculation have shown the permanent biaxial stress-state within a 20 
mm and 40 mm diameter for specimens with thickness 1.5 mm and 5 mm 
respectively. The differences between the stresses at the center and radius 10mm 
and 20mm for specimen thickness 1.5mm and 5.0mm, respectively was less 2.5 
percent of the ones at the center, which holds under equi-biaxial loading conditions 
other than 21 σσ = = 56MPa or 130MPa.  

 
2.1 Semi-elliptical cracks 
A finite-element approach was employed to numerically determine the stress-state a 
plate that involves a semi-elliptical fatigue crack. The calculations were done in 
two steps. Steps one using two-dimensional plane FEM to describe the general 
stress-state of the plate. Steps two was to calculate the stress-state of a metal 
volume at a crack tip; here we used three-dimensional FEM. The idea was that the 



solutions, obtained in terms of two- and three-dimensional FEM, would coincide at 
the outer border of this volume. 
Tetrahedral finite elements with linear approximation of displacements are utilized. 
1/8 part of a periodicity cell is divided into parallelepipeds. Each one of them in its 
turn is divided into six tetrahedrons by three cross-sections, parallel to coordinate 
axes and containing side diagonals. The example of cell’s discretisation is shown in 
Fig.1,b, (periodic cells) for one of the fatigue crack position.  
 

 

 
a) 

  
 

b) 
Figure 1: Results of FEM analysis (a) for stress-state estimation and radius Rx, Ry 
for uniformly stress state of the cruciform specimen in 5 mm of the thickness, and 
(b) periodic cells used in the cruciform specimen of the 10 mm in the thickness for 
the semi-elliptical crack.  
 
3 CRACK GROWTH SIMULATION UNDER IRREGULAR BIAXIAL CYCLIC 

LOADS. 
The crack growth simulation was performed for cruciform specimens of 5.0mm in 
the thickness. In the middle part of the test specimen with this thickness, the crack 
plane does not deviate too far from the horizontal plane at any λ -ratio. That is why 
the crack growth simulation is done without taking consideration the deviation of 
the fracture plane from the horizontal plane for various λ -ratio. So, the first step of 
numerical analysis for the fatigue crack growth modelling was performed taking 



consideration the functional correction ),( RF λ  in the case of through cracks growth 

[3]. It used to calculate the stress intensity factor by the eqn (1).  
The plastic zone size, Da , within which the load interaction effect after an overload 

can be seen, can be calculated on the basis of the maximum tensile deformation 
theory by the next relation [1]:  

Da = 0)( Da ]5.1][1225.0[ R−+− λλ                                  (3) 

The crack growth simulation must be derived from eqn (3) for various R  ratios in 
the range 0.1< R <0.5 and 0< λ <0.7.  
The crack simulation was developed by the relations taken from the reference [1] 
when the crack increment, f∆ , during one-cycle estimates without calculation of 

the stretched zone. The reviewed relations were introduced for the fatigue crack 
simulation in the case of a number of cycles between overloads, which are enough 
to cross by the crack the plastic zone performed under an overload. But in reality 
sequence of cyclic loads, which reproduced, for instant, the aircraft loading by 
flight, can be performed with permanent increasing of the maximum stress level 
from one cycle to another.  
That is why there was introduced two-parametric model for loads interaction effect, 
when a size of the stretched zone, std , was used to estimate the fatigue crack 

increment under an overload, as shown in Fig.2, a. There was examined a block of 
cyclic loads that have been discovered from the stress-state analysis in several 
flights for one of the wing area of the civil aircraft Yak-42, Fig.2, b. The biaxial 
stress ratio was in the range of -0.2< λ <+0.5 for 55 cyclic loads of the schematised 
block for one flight.  
The earlier performed measurement have shown correlation between the stretched 
zone size and the stress equivalent value, eK , in the range of –1.0<λ <+1.0 and 

0.1< R  <0.8 [3]. On the basis of these measurements can be introduced the next 
relation for the mean value, std , of the stretched zone:      

eKCoCstd 1+=                                                           (4) 

The sequence of events during one cycle of loading used for simulation fatigue 
crack growth was the next: a) during uploading the crack increment takes place 
because of the stretch zone formation; b) during unloading the crack increment 
takes place because of material fracture [1]. As a result, it allowed to us to estimate 
the crack increment in one cycle of loading from the next relations:       

δastdf +=∆ )(             for  ieKieK )(1)( ≥+  

                                                                                                                     (5) 

δaf =∆ )( ,                 for  ieKieK )(1)( ≤+  



 
The fatigue crack growth simulation by the eqns (1)-(5) have shown that for the 
biaxial cyclic loads the crack increment because of stretch zone formation is 
dominant for the cyclic loads sequence, shown in Fig.2. In the case of biaxial 
tension-compression the crack growth period under the principal stress 1σ = 70 MPa 

decreases on 4.5% (209 blocks of cyclic loads) in comparison with the case of λ =0 
for the crack interval 10-20mm. In the case of biaxial tension the crack growth 
period under the principal stress 1σ = 70 MPa increases on 3.5% (160 blocks of 

cyclic loads) for the same crack growth interval.  
 

 
a) 

 
b) 

 

 
Figure 2: Parameters (a) for schematized stretched zone, and (b) schematized block 
of cyclic loads by flight, which was discovered in the wing of the aircraft Yak-42.  
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