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ABSTRACT 

We study fracture of notched samples made of quasi-brittle, polyphase materials like rock, concrete or 
ceramics. The fracture demonstrates the size effect during loading. This means that a full-size sample made of 
such a material exhibits different fracture behaviour than a laboratory-size sample. The effect is explained by 
the existence of an extended zone of distributed defects and cracks (process zone) that surrounds the tip of the 
propagating fracture. The growth mechanisms of the process zone is scale-dependent: in an unbounded 
sample or a full-size structure, the zone develops until its maximum width and then it remains of the same 
width, while in a bounded sample that is less than some critical size, the process zone cannot be fully 
developed. Various similarity and scaling approaches to mechanics of multiple fracture are discussed. The 
growing process zone is modelled as a pattern of fractures having fractal properties on the intermediate stage 
of the development of the pattern. A formula is derived for the critical tensile stress that depends on both the 
sample size and the size of the process zone.  

 
1 INTRODUCTION 

During loading of notched samples made of quasi-brittle, polyphase materials like rock, concrete 
or ceramics several stages of fracture may be observed. In particular, micro-defects grow and 
become microcracks, in turn these coalesce and isolated mesocracks are formed. Then a 
macrocrack grows slowly by breaking bridges between the macrocrack tip and mesocracks of the 
process zone (Botvina [1], Huang [2]). The process zone consists of a cascade of interacting 
defects of various length scales (Barenblatt [3]). Hence the process of multiple fracture in these 
materials should be considered on several scales: micro, meso and macro. The  concept of quasi-
brittle materials supposed that there is a narrow layer of non-elastic deformations near the fracture 
surfaces. During the crack propagation, both this layer and  the new fracture surface absorb 
energy. One can also observe the fracture size effect, namely a sample made of polyphase material 
exhibits different behaviour when it is of laboratory-size and when the sample size increases. Such 
a behaviour can be explained by the screening effect of the process zone and scale-dependent 
growth mechanisms of the process zone. To study the process within the intermediate scale, new 
postulates which are outside the hypotheses of classical continuum mechanics, are employed. 
Various similarity and scaling approaches to mechanics of multiple fracture including geometric 
similarity, statistical self-similar scaling of patterns, parametric-homogeneous scaling, fractal 
scaling, will be discussed in order to describe the cascade of developing defects and cracks. To 
study multiple fracture, the following postulates will be employed (Borodich [4]): (i) the width h 
of the layer of inelastic deformation near any fracture surface is constant and it is the same for  
mesocracks and the macrocrack; (ii) material of every cube of size h centred in a point of fracture 
surface absorbs the same quantity of energy gf; (iii) no new microcracks arise in the compressed 
region; (iv) the process zone develops during loading, the size of process zone (its width and 
length) depends on both the fine structure of material and the stress field; (v) the jump of the main 
crack tip leads to a relaxation of the stress field in some domain behind the tip, and the micro- and 
mesocracks situated in the domain will not grow further, therefore, the process zone can be 



separated on an active  and a passive part , the active part only is essential for propagation 
of the main crack; (vi) the stress concentration  regions near the mesocracks of the periphery of the 
active domain are sources for growing of new microcracks. Let us cover all mesocracks of the 
active part of the process zone by cubes of the size h centred at points of fracture surfaces. Then 
the average amount <W> of absorbed energy can be calculated as 

AS PS

<W> = gf N(h) + const                                                               (1) 
where N(h) is the minimal number of the cubes in the cover. The idea of covering the cracks of the 
process zone by cubes in order to calculate the amount of absorbed energy is very close to the 
methods of applied fractal geometry. Evidently, this approach can be used if the width of the 
plastic layer is small with respect to the average distance between mesocracks. The author has 
modelled the discrete propagation of fracture using parametric-homogeneous scaling (Borodich 
[4]). However, here a physical fractal model of size effect in a sample subjected to stretching 
stresses is presented. The growing process zone is modelled as a pattern of fractures having fractal 
properties on the intermediate stage of development of the pattern. The main part of the 
developing process zone is assumed to be wedge-shaped, while its head (the active process zone) 
is bounded by an arc of a circle with the centre at the main crack tip. Fractal models are quite 
popular in mechanics of fracture (see, e.g. review by Borodich [5]). It was found (Chelidze [6], 
Zhao [7]) that patterns of multiple fracture in marble have fractal features. The author defines 
fractals as sets with non-integer fractal dimension, and emphasizes that it is necessary to split the 
term in two: mathematical and physical fractals. Confusion of these two kinds of fractals led often 
to various erroneous or at least unjustified conclusions. Mathematical fractals or fractal geometry 
studies various fractal and multifractal measures and fractal dimensions, in particular Hausdorff 
dimension and box-counting dimension (this can be obtained by consideration the limit behaviour 
of covers of a set by boxes of size at most δ when δ→0), while physical (natural, empirical) 
fractals which are real world or numerically simulated objects exhibiting  a kind of self-similarity 
(this is the so-called fractal behaviour) in a bounded region between upper (∆*) and lower (δ*) cut-
offs. The main distinction between physical and mathematical fractals is that the power law of 
natural objects (empirical fractals) is observed on a bounded region of scales only, while 
mathematical fractals consider limits when the scale of consideration goes to zero. Hence, the 
scaling approach to these two kinds of fractals is not the same. In 1992 a model of a fractal single 
crack was presented by the author (Borodich [8]). Both mathematical and physical fractal 
approaches were employed. Then it was shown (Borodich [9]) that the same scaling arguments are 
valid for fractal fracture patterns. Let us use the fractional part D* of the fractal dimension, 0 < D* 
< 1. Hence, the fractal dimension of a fractal curve is D = 1 + D*, while the fractal dimension of a 
fractal surface is D = 2 + D*. We suppose that the fractal dimension of the mesocrack pattern is 
equal to some value C and it is constant during the cloud growth. It is known that the fractional 
parts of the fractal dimensions of profiles of fracture surfaces (D*) and patterns of fracture (C*) for 
quasi-brittle materials belong mainly to the following intervals: 0.04 < D* < 0.33 and 0.47< C* < 
0.79. It was shown that fractal dimension of a fracture surface can correlate with fracture energy 
only in quasi-brittle materials with very narrow plastic zones. If fracture surface exhibits fractal 
features, however the width of the plastic zone h is about the upper cut-off of the fractal law, i.e. h  
≈ ∆*, then fracture energy is mainly related to the work done within the non-fractal zone of 
inelastic deformation of the crack and there is no correlation (Borodich [6]). Analysis of 
experimental data showed that for metals ∆* ≈ 0.1 mm (Bouchaud [11]), while h ≈ 0.4 mm 
(Botvina [12]), i.e., ∆* ≤ h. Hence, the fractal properties of fracture surface are not essential for 
fracture energy of ductile materials. This conclusion is in agreement with experimental data. On 
the other hand, the experimental studies show (Chelidze [6], Zhao [7]) that for polyphase materials 
the upper cut-off for fractal law for fracture patterns is ∆* > 1 cm, i.e., ∆*>> h. Therefore, the 



fractal properties of the pattern of mesocracks could characterize the fracture energy of the 
materials when the fractal properties of the main crack surface are not essential. Thus, the 
experimental evaluation of the dimension C of the fracture pattern is more important for fracture 
mechanics than the evaluation of the dimension D of the fracture surface. It was found by the 
Jerusalem group (Avnir [10]) that the overwhelming majority of reported physical fractals span 
about 1.5 orders of magnitude. In other words, the average ratio of the fractal law cut-offs (∆*/δ*) 
is about 31.6. 
 

2 MULTIPLE FRACTURE: FRACTURE ENERGY AND SIZE EFFECT 
It is assumed in our model that (i) the growth of the process zone results in a continuous growth of 
the main crack; (ii) the fractal scaling is applicable to describe the beginning of the self-similar 
growth of the process zone; (iii) while a fracture pattern is already fully developed, i.e., when the 
width of the process zone reaches some critical size , the pattern picture is repeated. This 
means that the active part of the process zone is invariant with respect to continuous shifting. Let 
us use two systems of coordinates, namely  and where 
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. The process zone is assumed to consist of two parts, namely a wedge-shaped part 
with some angle 
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described as a segment of a circle. Hence, if the main crack has the tip at a point then for 
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Substituting the fractal number-radius relation into eqn (1), one can calculate 
the average amount of energy <W> absorbed by mesocracks of the process zone   
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where  is the current width of the zone. The fracture energy )(xwc dxdWGF /= . Hence, 
differentiating eqn (2), one obtains 
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The above relations have been derived for unbounded samples. They are in qualitative agreement 
with experimental results concerning the behaviour of fracture energy of large concrete samples 
(Brameshuber [13]). However, we assume that the main cause of the size effect is that the process 
zone cannot be fully developed in a bounded model of a real size construction. Hence, when 
mesocracks ahead of the tip of the main crack reach the sample boundary, the value of the fracture 
energy decrease from to the fracture energy of the ultimate link . Thus, a large sample of 

the size  with a notch of the size  has filly developed process zone, while the zone width 
cannot reach the value  in a small model of the size  with a notch of the size , 

. Hence, the growth of the process zone stops at some 
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size , when cracks ahead of the tip of the main crack are reaching the boundary of 
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In the case of nonlinear fracture of an  elastic body with a cut that is under a uniaxial tensile stress 
σ  perpendicular to the cut, the fracture energy criterion can be formulated that the elastic energy 
release rate )(),( lRlG =σ . Here  is the R-curve (the resistance curve) of the sample that 

is equal to its fracture energy . The criterion says that if 

)(lR

FG RG <  then the crack does not 
propagate and if  then the crack is unstable and its propagation is catastrophical. In an 
elastic solid under a uniaxial tensile stress 

RG >
σ , the energy released after creating a straight-through 

planar crack perpendicular to the stress direction can be estimated using the following idea: there 
exists a domain where the stress field relaxes, and employing the principle of independence of 
released energy of crack trajectory: the total released energy in an elastic solid does not depend on 
crack trajectories if the crack shape is fixed in some small regions at the crack tips and the 
trajectory variations are within the domain of the stress field relaxation. It follows from the 
principle that the total released energy does not change if there are some micro- and mesocracks 
within the domain of the stress field relaxation. Thus, ),( lG σ  is a linear function of the crack 

length l. If the line  is tangential to G R  at some length cxll += 0  then RxlG >+ ),( 0σ  for 

cxx >  and the crack starts to propagate catastrophically. However, if *∆>cx  in the full-scale 

structure then the catastrophical propagation starts at *∆=x . The catastrophical propagation 

starts at  in a model. Therefore, we can write the following formulae for the fracture 

stresses and 
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a coefficient and and are the fracture stress in the full-size sample and in a small 

model respectively. Thus, if  then we obtain the size effect law of 
fracture of polyphase samples under tension 
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where . One can see that eqn (3) depends on both the sample size and the size of the 
process zone. Eqn (3) allows us to analyse the case when there is no initial notch, i.e. then the 
process zone starts to develop from an initial flaw.   
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It is known that scaling methods may be very effective in description of fracture processes 
(Barenblatt [3], Borodich [4]). In the above considered case,  fractal scaling allowed us to bridge 
scales of multiple fracture. Assuming that the process zone cannot be fully developed in a bounded 
model, the size effect eqn (3) was obtained. 
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