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ABSTRACT 

In present report a stochastic fiber break clusters accumulation model for polymer matrix UD composites, 
subjected to tension-tension fatigue, is under consideration. A stochastic kinetic equation, leads to the 
development of closed-form analytical solutions for probabilities to obtain adjacent fiber breaks of a 
particular configuration in a composite material.  The chain-of-bundles material model is described. Weibull 
type function is used to characterize a fatigue lifetime of fiber element. Single fiber fatigue fracture tests were 
performed with a goal to obtain fiber element lifetime probability function parameters. The continuum 
damage mechanics with internal state variables was used to describe the constitutive behavior of the 
composite with damage. The internal state variable that accounts for considered damage is formulated. FEM 
analysis and fiber breaks accumulation model was incorporated into the formulated constitutive law with 
damage in order to predict the stiffness loss due to the damage. Theoretical predictions for stiffness 
degradation due to damage accumulation in fatigue were compared with experimental data for glass fiber and 
carbon fiber composites. 

1. INTRODUCTION 
The use of UD composites in a load bearing structures leads to a necessity for investigation of 

their strength and fatigue properties. For material, loaded by tension-tension, fatigue life diagram 
consists of three distinct regions. One of them is characterized by a disperse fiber breaks 
accumulation transforming to macro crack and a final failure. This process has a stochastic nature. 
The result’s scale is dependent on what kind of mechanical behavior are shown by matrix and 
fibers, was combined in material. For polymer matrix composite, traditionally, fiber stiffness is 
many times higher than matrix stiffness. At first stage, we appropriate that during such material 
loading, matrix exhibits close to linear elastic behavior, with possibility to deviate near the point of 
bulk material failure. Local plasticity and fiber matrix delamination, as well as polymer material 
viscoelastic properties are changing diffuse damage accumulation kinetics and can play an 
important role at the final stage of loading and must be described in future. 

2. DAMAGE ACCUMULATION 
Let consider the unidirectional composite under tension-tension load, applied in fiber direction. 

Maximal tensile stress (during one cycle) is lower then material strength. Such way loaded sample 
can carry external force and fail only after hours. Nor matrix material, nor fiber or   fiber –matrix 
interface    have       internal cracks or fiber- matrix delamination if it will not be noted. UD fibers 
in cross-section are forming the hexagonal array. We designate the length as L and the number of 
fibers in specimen as n. Traditionally, the role of fibers in material is to carry an external tension 
load, the role of matrix is to re-distribute overstress from a place of fiber brake to adjacent fibers 
and along broken fiber from the place of failure. The length of the area of stress re-distribution 
along broken fiber fδ is a basic geometrical parameter to present material as the chain of bundles. 
That’s mean the specimen’s material is partitioned into a series of m bundles with the bundle 



length fδ  and n fibers in bundle. Composite loading by tension in fiber direction leads to diffuse 
fiber breakage accumulation. Isolated fiber break is associated with one element failure in 
community of n×m elements. All elements have the same dimensions, geometrically each element 
involve fiber, surrounded by matrix (see Figure 1). 
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Figure 1. Chain of bundles model. fδ  -element                 Figure 2. Configurations of  

length; n – elements number in each bundle;                       adjacent broken fibers. - designation 
m –number of bundles in material.                                       for overloaded nearest fibers.   
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Modeling of damage accumulation in composite material, under applied tension-tensile load is 
based on the assumption, that failure is a complex stochastic process starting with scattered, 
isolated fiber brakes (at fiber’s internal flow or, structure heterogeneity) overstress redistribution 
on adjacent to broken fibers, failure of overstressed neighbors, forming breaks clusters and the 
breaks clusters growth and coalescence in the range of each bundle, orthogonally to the fiber 
direction. This process starting relatively slowly will transforms to catastrophic ultimate cluster 
growth, when overstress distributed on closest unbroken neighbors will immediately initiate one of 
the next fiber break. We can introduce two random variables ( ),a fI Nσ  and ( ),a fJ Nσ  with joint 

probability function ( ) ( )( ) ( ), , , ,j
a f a f i a fP I N i J N j H Nσ σ σ= = = , 0,0 ≥≥ fa Nσ , 

0, minmax +→= σσσ a , to find cluster which was born and after that was stayed conservative till 
number of cycles , as the cluster consisting of i adjacent fiber breaks and having a form 
number j. 

fN

( , )a fW Nσ  is a probability of fiber failure. These function parameters are obtained from 
a single fiber fatigue fracture test. For example three adjacent breaks, in material with a hexagonal 
fiber array, may form three different geometrical configurations (see Figure 2.). If the geometrical 
configuration of three adjacent breaks is forming a line, we are designating it like a cluster with a 
form number . Cluster with the geometrical configuration forming curved line will have the 
form number two ( ) and cluster with compact configuration - number three ( ). Chance 
for double break cluster to grow and to form tree break cluster with the form index equal to one, is 
the chance to fail one of two overstressed fibers belonging to the set of closest neighbors around a 
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two broken fibers. Here we must to note that overstress distributed on adjacent fibers 2
kα , 

 coming from two breaks is different for fibers around broken and depends on . Two 
break cluster growth to three breaks cluster’s set with different geometry, will happen by fiber 
element failure under different overstresses. Probability to obtain cluster, consists of adjacent 
fiber breaks and have form number , is: 
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These are kinetic equations, in recurrent form, for stable states integral probabilities. Using non-
effective length like the governing parameter for material partition we obtain a large number of 
fiber elements in any real mechanically loaded composite volume. That’s mean we are interesting 
in a small clusters probabilities or in a lower tail for probabilities distributions. Looking on 
obtained formulae we can conclude that all clusters probabilities ( ),j

r a fH Nσ  can be represented 

multiplying function dependant only on stress and geometry by function dependent on number of 
cycles ( ) ( ) ( ),j j

r a f r a r fH N H H Nσ σ= ⋅ .   

3. DEGRADATION OF MECHANICAL PROPERTIES 
The thermodynamically consistent constitutive relationships for media with cracks can be 

written in form as 

 , (2) ξξ βεσ klijklklijklij IC +=

where ( )j
iijklijkl HII ξξ =  is damage dependent modulus, and 1,...,ξ = Ω  accounts for different 

damage modes. The locally averaged internal state variables associated with energy dissipation 
due to the cracking is defined as [1,2]  

 dSnu
V S

lkkl ∫=
2

1β , (3) 

where klβ  are components of internal state variable tensor, V  is a local volume in which 
statistical homogeneity can be assumed,  and  are crack face displacement and normal 
respectively,  is a crack surface area. 
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The constitutive relationships for material with damage can be obtained from (2) and written in 
the matrix form 

 { } [ ]{ } [ ]{ } { }(1) ,A B k fψ ε= + +  (4) 

where [ ]A  and [ ]B  are extensional stiffness matrix, and the coupling stiffness matrix of the 
specimen. The effect of the fiber fracture that takes place due to the loading in fiber direction is 
described by ( ){ } ( )[ ] ( ){ }( )111 , βIFf = , where ( )[ ]1I , is a damage stiffness tensor, and ( ){ }1β  is 
internal state variable accounting for fiber fracture damage. Generally, it can be determined 
experimentally, or calculated using micromechanics approach. The measurements of stiffness 
degradation of UD laminate are used in order to determine ( ){ }1β  experimentally. 

4. DETERMINATION OF DAMAGE TENSOR ( ){ }1β  

The progressive fiber fracture can be described as fiber failure in a representative unit element 
as illustrated in Figure 3. Debonding effects and matrix cracking effects can be accounted in the 
considered unit element changing the crack opening displacement. 

1x

2x

1n

( )0
1u

1
2 fd

1
1
8 fS u dπ=

fδ

md
 

Figure 3. Broken fiber displacement in the repeating unit element (for single fiber break).  is a 
diameter of the fiber, d  is a dimension of the surrounding matrix, and  is ¼ of the area of the 
ellipse under the crack profile line.  
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The general definition of internal state variable klβ , expression (3), can be formulated for 
considered damage as 
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where  is crack surface area, is repeating unit element for a cluster consisting of i adjacent 
broken fibers. If the crack (see Figure 2), does not change the orientation of the normal we have 

only one 
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klβ  component. It leads to the ( ) ( ) ( ) ( ){ }T
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where the  accounts for crack opening in Mode-I, and according to (5), can be expressed for a 
single fiber break in form 
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11β
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The dimensions may be expressed through the fiber volume fraction  and fiber ineffective 

length, 
fV

fδ . The coefficient  yields to form geometry of the hexagonal fiber packing. 
Both, ineffective length, and number of cracks per unit fiber length as a function of applied strain, 
can be estimated experimentally from the Single Fiber Fatigue Fragmentation Test (SFFT).  On 
the other hand 

0.8244k =

( )fa
j

i NH ,σ  statistics is used for generating the crack density function.  FEM can be 
used to determine ineffective length and crack opening displacements.  

5. EXPERIMENTAL CONSIDERATIONS 
Let's consider the unidirectional laminate with fiber orientation in loading direction, subjected 

to fatigue loading ,. There is only one type of damage expected, and 

it can be described with the internal state variable 

( ){ } ( ){ 0 0
T

f x fN Nψ ψ= }
( )1

11β . Further, the constitutive relationships for 
the considered material can be written in a matrix form as { } [ ]{ } ( )[ ] ( ){ }hIA 11 βεψ += . 
Considering loading conditions, and using ijkl ijklC I− =  [1,2], and ij ijA C h= , matrix equation can 

be reduced to, ( )hCAA 1
11112121111 βεεψ ++= . Further, introducing the definition of the stiffness, 
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 (  is averaged over the loading cycle) and using the expression for 1E 1ψ  in it, the 

relationship for ( )1
11β  as function of measured stiffness for particular applied strain level is 

obtained, 
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Calculations were made, and described approach was realized for carbon fiber epoxy and glass 
fiber polyester composite. 



6. CONCLUSIONS 
Comprehensive fiber breaks accumulation modeling was performed for UD composite under 

fatigue. The fatigue SFF tests were carried out to obtain fiber element fracture parameters. The 
ISV approach was used to obtain stiffness degradation of UD composite during the damage 
accumulation. The methodology is proposed how to measure the considered ISV experimentally. 
Theoretically calculated and experimentally measured values of the ISV are compared. 
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