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ABSTRACT 

Some basic issues regarding the cohesive zone modeling of fracture in homogeneous materials as well as at 
interfaces are studied. It is shown that in order to remove the stress singularity at the tip of a cohesive zone in 
a homogeneous elastic medium the cohesive law must have a finite traction at the initial zero opening 
displacement. As to interface fracture, the stress singularities in tension and shear may not be simultaneously 
cancelled at the cohesive zone tip if a single cohesive zone length is adopted for both tensile and shear fracture 
modes. The dependence of the cohesive energy density on the phase angle for interface fracture is also 
discussed under small scale cohesive zone conditions. Finally, the energy dissipation at the tip of a prescribed 
cohesive zone is examined using a bilinear cohesive zone model under the uncoupled tension/shear conditions.  
 

1 INTRODUCTION 
In recent years, the cohesive zone modeling approach has emerged as a popular tool for simulating 
fracture processes in materials and structures due to the computational convenience. In the 
cohesive zone approach, it is assumed that a cohesive zone exists ahead of the crack tip. The 
cohesive zone consists of the upper and lower surfaces (cohesive surfaces) which are held by the 
cohesive traction. The cohesive traction is related to the separation displacement between the 
cohesive surfaces by a ‘cohesive law’, or cohesive zone model. Upon the application of external 
loading, the two cohesive surfaces separate gradually, leading to the physical crack growth when 
the displacement at the tail of the cohesive zone (physical crack tip) reaches a critical value.  
 Since Needleman [1] introduced the cohesive surface concept in the finite element 
framework for fracture study, the cohesive zone models together with interface-cohesive elements 
have been used to study various fracture problems, for example, fracture along a bi-material 
interface [2], dynamic crack growth in brittle materials [3], impact damage in brittle materials [4], 
numerical aspects of cohesive zone models [5], and so on.  
 In spite of the extensive use of cohesive zone models in the study of material and 
structural fracture, it seems that some fundamental aspects of cohesive zone models have not been 
fully understood. For example, how are cohesive zone models directly related to failure 
mechanisms at the atomic, micro-, or macro-level? are there physical restrictions on the functional 
form of cohesive laws? The cohesive zone length for Mode I fracture can generally be determined 
from the condition that no energy dissipation occurs at the cohesive zone tip. For the mixed mode 
fracture case, however, there are two independent cohesive tractions (normal and shear) and a 
single cohesive zone length may not be able to satisfy the condition that stress singularity at the 
cohesive zone tip be cancelled and, as a result, energy would be dissipated at the singular cohesive 
zone tip in addition to that dissipated inside the cohesive zone. It is well known that interfacial 
fracture toughness is not a constant but is a function of mode mixity. Such a characteristic of 
interfacial cracks must also be accounted for by the cohesive zone model. To provide some 
answers to the above questions, Nguyen and Ortiz [6] tried to derive a universal macroscopic 
cohesive law based on the coarse-graining and renormalization of atomistic binding relations.  
 The present work aims to study some basic issues in the application of cohesive zone 
models  especially in the fracture of an interface between two dissimilar elastic media. The focus of 
this study is on the constraint conditions on the formulation of cohesive laws in single mode as 



 2

well as mixed mode fractures. The dependence of the cohesive energy density on the loading 
phase angle in bi-material interfacial cracks is discussed. Issues arising from the determination of 
cohesive zone length by removing the stress singularity at the tip of the cohesive zone are 
examined. Examples for possible energy dissipation at a cohesive zone tip are illustrated using a 
bilinear cohesive model. 
 

2. LINEAR HARDENING COHESIVE ZONE MODEL 
The linear hardening cohesive zone model is a basic element in several widely used cohesive zone 
models. In numerical simulations, a linear hardening model is usually used as the first step in a 
nonlinear model. The linear hardening model itself has also been used in some studies. This kind of 
models has a common feature that the cohesive traction takes a zero value at the start of cohesive 
surface separation (zero separation). In other words, these models have an initial (or asymptotically 
initial) linear elastic response. Physically speaking, a cohesive zone model describes the fracture 
process in a material and the material separation occurs only after it deforms significantly. It is thus 
expected that cohesive models should have a finite traction at the start of separation, or an initial 
rigid response. In this section, we discuss this problem by considering the mathematical and 
physical restrictions on the cohesive zone development in an elastic background material.  
 Consider a two-dimensional elastic medium of infinite extent with a crack of length 2a 
subjected to remote tension ∞σ , as shown in Fig. 1 (homogeneous material case). A cohesive zone 

of length, ρ = c - a, develops ahead of each crack tip upon external loading. The cohesive traction 
σ and the separation δ  follow the linear hardening model 
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Where σ is the cohesive traction, δ the opening displacement of the cohesive surfaces, σc the peak 
cohesive traction, and δc a characteristic opening at which the cohesive traction suddenly drops to 
zero. 
 The cohesive fracture modeling approach employs the cohesive crack assumption that the 
cohesive zone is treated as an extended part of the crack with the total stress intensity factor being 
vanished at the tip of the cohesive zone thereby canceling the stress singularity. Hence,  
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where the first and second terms on the left-hand side are the stress intensity factors due to the 
external load ∞σ  and the cohesive traction σ, respectively. The total crack opening displacement δ  
is [7] 
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where E’  = E for plane stress and E’  = E /(1-ν2) for plane strain, and G(x, ξ) is a known function. 
The integral equation for the opening displacement δ can be obtained using Eqs. (1) – (3) as 
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where K (x,ξ) is a Fredholm kernel. Eq. (4) is a homogeneous linear integral equation for δ and has 
only a trivial solution. This becomes evident by considering the corresponding crack bridging 
problem. For the bridging problem, a nonhomogeneous term due to the crack tip energy dissipation 
appears on the right-hand side in Eq. (4), which leads to a unique nontrivial solution [8]. This, in 
turn, requires that the homogeneous equation Eq. (4) have only a trivial solution. The nonexistence 
of a nontrivial solution for Eq. (4) implies that the crack tip singularity can not be cancelled. As a 
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result, the cohesive zone model can not assume a linear hardening law with an initial zero cohesive 
traction, if the stress singularity is to be removed, or if the energy dissipation is not allowed, at the 
tip of the cohesive zone.  
 In view of the foregoing, it is concluded that an appropriate cohesive law must have a 
finite cohesive traction at the onset of separation. In fact, softening cohesive zone models with a 
finite initial cohesive traction have been widely adopted for concrete fracture applications. The 
cohesive zone model derived by Jin and Sun [9] based on crack front necking also has a finite 
initial cohesive traction. 
 

3.  COHESIVE ENERGY DENSITY FOR INTERFACE CRACKS 
The cohesive energy density has been regarded as a material constant. For a Mode I crack with a 
small cohesive zone so that an elastic K -dominance zone exists around the crack tip, this can be 
proved by using the J-integral technique and the cohesive energy density is the critical energy 
release rate. For a crack at the interface between two dissimilar elastic materials, however, it may 
not be appropriate to assume a constant cohesive energy density.  
 Consider a crack at the interface between two dissimilar elastic materials with the shear 
modulus and Poisson’s ratio for the upper and lower media denoted by µi and νi (i = 1, 2), 
respectively. It is assumed that the cohesive zone is surrounded by the elastic interface crack tip 
oscillation field with the complex stress intensity factor K1 + iK2.  For the two integration paths 
with one along the boundary of the cohesive zone and the other within the dominance zone of the 
elastic oscillatory field, application of the J-integral [10] at crack initiation yields 
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where Γc is the cohesive energy density, Gc the critical energy release rate, β  Dundurs’ constant 
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κi = 3 – 4νi for plane strain and κi = (3 – νi)/(1 + νi) for plane stress, and E* given by 
( ) ( )[ ] (7)                                                /16/1/1 /1 2211

* µκµκ +++=E  
It is known from the interface fracture mechanics (see, for example, [11]) that Gc depends on the 
phase angle, i.e.,  
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where Ψ is an appropriately defined phase angle. Eqs. (5) and (8) indicate that  
(9)                                                                    )(ΨΓ=Γ cc  

Hence, the cohesive energy density for interface cracks depends on the phase angle.  
 

4. INTERFACE STRESS SINGULARITY AT A COHESIVE ZONE TIP 
In the cohesive zone modeling approach, the energy released in the formation of new crack 
surfaces (unit area) is assumed to be the cohesive energy density. That is, there should be no 
energy dissipation at the tip of the cohesive zone. It is from this condition that the cohesive zone 
length is determined in Mode I case. For mixed mode fracture, however, both opening and sliding 
separations contribute to the energy dissipation. Null energy dissipation at the tip of the cohesive 
zone thus requires cancellation of singularities in both normal and shear stresses at the cohesive 
zone tip.  
 Consider a crack of length 2a at the interface between two semi-infinite dissimilar elastic 
media subjected to remote tension ∞σ and shear ∞τ , as shown in Fig. 1. A cohesive zone of length ρ 
= c - a develops ahead of each crack tip upon external loading. It is assumed that the cohesive 
tractions are constant. Consider the small scale cohesive zone case, i.e., ρ << a. Hence, ρ+≈ aa . 
The complex stress intensity factor (SIF) at the cohesive zone tip due to the applied loads is [12]  
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and the SIF due to the cohesive traction can be obtained from the Green solution of Rice and Sih 
[12] as follows 
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Here, the definition of SIFs of Sun and Jih [13] is adopted and ε is the oscillatory index given by 
( ) ( )[ ] (12)                                                    )2/(1/1ln πββε +−=  

 The cancellation of stress singularity at the cohesive zone tip means 
(13)                                                             0=+ cohapp KK  

or  

(13)'                                    
21

2
)

2
(

2
)cosh(

21
0 ε

ρ
ρ

σ
π

π
πε
ε εϕψ

i
a

ea
i

Te iii

−
=

+
 

where ϕ is the phase angle of the cohesive traction and ψ is the loading phase angle, i.e., 
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Eq. (13)’ can be satisfied only when  
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In the cohesive zone model, σn and σs are assumed to be material-dependent constants. While they 
may depend on the phase angle ψ according to Eq. (9), Eq. (15) can not be satisfied in general, 
which implies that the stress singularity at the cohesive zone tip may not be cancelled.  
 

5. ENERGY RELEASE AT THE TIP OF A COHESIVE ZONE  
As stated in the above section, there should be no energy dissipation (or equivalently no stress 
singularity) at the tip of the cohesive zone and a single cohesive zone size may not suffice this 
requirement under mixed mode fracture conditions. In Section 2, it has been shown that for Mode I 
fracture in homogeneous materials, the cohesive zone model can not assume a cohesive law with 
an initial hardening segment having an initial zero cohesive traction, if the stress singularity is to be 
removed at the tip of the cohesive zone. In other words, energy will be released at the tip of a 
cohesive zone described by a linear hardening law with an initial zero traction.  
 When the stress singularity can not be removed at the tip of a cohesive zone, the size of 
the cohesive zone will not be precisely determined. In this case, the length of the cohesive zone 
does not represent the actual cohesive zone size. To make a distinction, we refer this kind cohesive 
zone as the prescribed cohesive zone. In this section, we will discuss the energy dissipation at the 
tip of a prescribed cohesive zone described by the following bilinear model 
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where c
nσ  is the peak normal cohesive traction, c

nδ  the critical opening separation at which the 

normal cohesive traction vanishes , and 1
nδ  the characteristic separation corresponding to the peak 

normal tractions, as shown in Fig. 2. For simplicity and without compromising our fundamental 
argument, the normal and shear components are assumed to be uncoupled in the cohesive zone 
model and the cohesive law in shear has the same form of Eq. (16). The oscillatory index ε is also 
taken to be zero. Hence, the opening and shear modes are uncoupled in the interface crack problem. 
 Again consider a two-dimensional bi-material elastic medium of infinite extent with an 
interface crack of length 2a subjected to remote tension ∞σ and shear ∞τ , as shown in Fig. 1. It is 
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assumed that a cohesive zone of length, ρ = c - a, is prescribed ahead of each crack tip upon 
external loading. The integral equation method described in Section 2 is used to calculate the 

energy release rate tip
IG  at the cohesive zone tip (stress singularity now can not be cancelled there). 

 Fig. 3 shows the normalized Mode I energy dissipation c
n

tip
IG Γ/  versus the 

nondimensioanl crack extension, c
nla /∆ , for c

nla =0  and various ratios of c
nn δδ /1 , where 

2/c
n

c
n

c
n δσ=Γ is the cohesive energy density (opening mode), ( )2* / c

n
c

n
c
n El σΓ= is the 

characteristic cohesive length, and a0 is  the initial half crack length. The characteristic length c
nl is 

usually employed to estimate the cohesive zone size. The prescribed cohesive zone length ρ is 
taken as 2 c

nl . It can be seen in the figure that for a given crack extension, the normalized energy 

dissipation increases with the increase in c
nn δδ /1 , a parameter measuring the initial stiffness of the 

cohesive zone model. The energy dissipation remains under 5% of the cohesive energy density for 
c
nn δδ /1 = 0.1 and when the crack extension does not exceed half of the prescribed cohesive zone 

length. The energy dissipation remains almost above 30% of the cohesive energy density for a 

linear hardening model ( c
nn δδ =1 ) regardless of the crack extension amount.  

 
6. CONCLUDING REMARKS 

Some conceptual issues regarding fracture in a homogeneous material as well as along a bi-
material interface using cohesive zone models are examined. It is shown that the cohesive zone 
model can not assume a linear hardening law with an initial zero cohesive traction, if the stress 
singularity is to be removed. For interface fracture, a single cohesive zone length may not suffice 
the condition that both tensile and shear stress singularities at the cohesive zone tip be cancelled. 
The energy dissipation at the tip of a prescribed cohesive zone is then studied using a bilinear 
cohesive zone model under the uncoupled tension/shear conditions. It is concluded that the energy 
dissipation at the cohesive zone tip may not be neglected if the initial stiffness of the cohesive 
model in both opening and shear modes is low and the pre-embedded cohesive zone is not much 
greater than the characteristic length of the cohesive zone model in both cases of tension and shear. 
Finally, the cohesive energy density for interface cracks should be taken as a function of the 
loading phase angle rather than a constant. 
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  Fig. 1 A crack at the interface between two            Fig. 2 A bilinear cohesive zone model 
            dissimilar elastic materials under remote loads 

 

 
Figure 3 Normalized energy dissipation at the prescribed cohesive zone tip versus 

  nondimensional crack extension 
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