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ABSTRACT 

Analyzed in this work is the crack initiation and growth behavior of a linecrack in a magnetoelectroelastic 
composite that is made of BaTiO3 and CoFe2O4. The former represents the inclusions and the latter the matrix. 
Interaction of the elastic, electric and magnetic effects with the line crack can be exhibited explicitly by the 
form of the local strain energy density function. This includes the ways with which crack growth could be 
affected by altering the directions of poling for the electric and magnetic field with respect to those for the 
applied electric and magnetic field. Presumably, the various material, geometric and loading parameters could 
be selected to suppress crack extension provided that a suitable fracture criterion could be found. The strain 
energy density function criterion being positive definite is tested and applied as a possible candidate. The 
results reveal several previously undiscovered phenomena of crack initiation and growth behavior. A series of 
new experiments are recommended for future work 

1. INTRODUCTION 
  This work is concerned only with the mechanical behavior of the dual phase BaTiO3 and 
CoFe2O4 composite. The electric and magnetic effects can have a significant influence on the ways 
with which the composite could fail by macro-cracking. Electric and magnetic poling give rise to 
preferred directions in the composite when they are heated above the ferroelectric transition 
temperature and/or kept in a DC magnetic field to reach saturation at room temperature. Depending 
on the directions of the applied electric and magnetic fields with respect to poling, a pre-existing 
line crack could extend longer or shorter [1-3] in comparison to the reference state when 
magnetoelectric effect is not present. For the BaTiO3(inclusion) -CoFe2O4(matrix) composite, it is 
not obvious how the volume fraction of the inclusions would affect the fracture characteristics of 
the composite. Even when the composite properties are homogenized for determining the 
parameters in the constitutive relations, the multiscale nature of the problem prohibits the use of 
certain fracture criteria that are not foregiving to the different rates of energy release due to 
mechanical, electrical and magnetic means. Furthermore, it is not adequate to select just one of the 
stress or strain components and use it as a criterion for determining the failure of the composite for a 
specific loading. For the same material, the behavior of stress with time and strain with time may be 
different. The crack tip stress intensity factor may not have the same crack tip characteristics as the 
strain intensity factor. There is no obvious preference to choose one over the other. The likelihood 
is that a criterion may be problem specific. That is to say the same criterion may no longer apply 
when loading direction with reference to the composite microstructure is changed. This is 
particularly true for multi-functional composites. Briefly stated, the classical fracture mechanics 
approach limited to isotropic and homogeneous materials should not be taken for granted. It may 
not be valid for anisotropic and/or nonhomogeneous composites. For piezoelectric materials, the 
energy release rate approach has yielded negative results [4-6]. Disqualification of criteria could be 
made by a process of elimination once a criterion encounters contradiction. Agreement with test 
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data is only one of the ways of choosing a criterion; it may be necessary but not sufficient. These 
and other new findings concerned with the effect of the volume fraction of the inclusion are 
discussed. 

2. BASIC FORMULATION 
Consider a rectangular Cartesian coordinate system xj (j=1, 3) that is attached to a linear 

magnetoelectroelastic medium as shown in Fig. 1. Equal and opposite normal stresses σ∞ are 
applied far away from the crack of length 2a in addition to the application of electric field E∞ and 
magnetic field H∞. Poling of E and H are assumed to be normal to the crack in the x3- or y-direction. 
They can be reversed by attaching a negative sign to E or H. In what follows, x1 and x3 will be 
denoted by x and y, respectively. 

For plane strain, the displacements uj, 
magnetic field potential ϕ and electric field 
potential φ can be expressed in terms of a 
single function f(z) of the complex variable z 
= x + µy as  

)z(fu x = , )z(fau 1y = , )z(fa2=ϕ , 

)z(fa3=φ              (1) 
in which aj are coefficients to be found for 
specific problems. Once eqs. (1) are known, 
the strain, electric and magnetic field can be 
found from 
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The quantities εij, Ej and Hj in eqs. (2) are related to the stress σij, electric displacement Dj and 
magnetic flux Bj by the constitutive relations: 

ssijssijksijksij HhEec −−ε=σ , sissisksiksi HEeD β+α+ε= , sissisksiksi HEhB γ+β+ε=        (3) 

Note that cijks, eiks, hiks, and βis are the elastic, piezoelectric, piezomagnetic and electromagnetic 
constants, respectively. And αis and γis are dielectric permitivities and magnetic permeabilities.. The 
quantities in eqs. (3) are required to satisfy the equations of equilibrium in the forms 

0j,ij =σ ,   0D i,i = ,   0B i,i =                          (4) 

where body forces have been neglected. The physical constants γij, ∈ij, hij and eij determine the 
elastic, piezoelectric, piezomagnetic of the BaTiO3-CoFe2O4 composite. For this problem, it 
suffices to consider the four roots of µ in upper half complex plane such that eqs. (1) may be 
rewritten as 
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The method of solution follows the foot steps in anisotropic elasticity [7]. Knowing that dfk/dzk 
must have the 1/(r)−1/2 stress singularities at the crack tips with r being the distance from the crack 
tip, the functions fk in eq. (5) become 
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in which the coefficients Mk and Nk (k=1,---,4) can be determined from the boundary conditions 
Dy = 0 and  By = 0 for ±=≤ 0yandax                    (7) 

for an impermeable crack subjected to the followings loadings far away: 

Fig.1 Crack in magnetoelectroelastic material. 



0xx =σ∞ , 0xy =σ∞ , ∞
∞ σ=σyy , ∞

∞ = EEy , 0Ex =∞ , ∞
∞ = HHy , 0Hx =∞            (8) 

As mentioned earlier, the foregoing governing equations correspond to the constitutive coefficients 
γij, ∈ij, hij and eij in eq. (3). The threshold that accounts for this change will be determined by using 
the strain energy density function as a criterion [8,9]. 

3. EFFECT OF VOLUME FRACTION OF BaTiO3 
The piezoelectric and piezomagentic properties of the BaTiO3-CoFe2O4 composite with different 

volume fraction Vf of the inclusions can be found in [1,2]. Using the energy density function as the 
fundamental quantity for characterizing the response of BaTiO3-CoFe2O4, the influence of loading, 
microstructure parameter and defect growth will be examined. Piezomagnetic and/or piezoelectric 
properties are determined by the composite microstructure and they are governed by the 
macroscopic constitutive coefficients, say hij and eij. When the volume fraction of the inclusions is 
changed, the energy density factor 
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For the magnetoelectroelastic material, the volume energy density function dW/dV can be 
computed from 
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Failure by stable crack growth is assumed to occur when dW/dV becomes critical and by unstable 
crack extension when S becomes critical. The direction of stable and unstable crack growth is 
assumed to correspond with the minimum of dW/dV and S, respectively. A detail account of the 
theory can be found in [9]. It suffices to present some of the results using the normalized strain 
energy density factor Smin/σ∞

2a. This will be illustrated for hij magnified by a factor of 100. Plotted 
in Fig. 2 are the variations of Smin/σ∞

2a with E∞/σ∞ for H∞/σ∞ = −10−4 C2/(Ns2). The influence of the 
volume fraction is small for negative E∞/σ∞ ratio. As E∞/σ∞ becomes positive Smin/σ∞

2a would 
increase much faster for high Vf. This effect is quite noticeable in Fig. 2. As the magnetic poling is 

Fig. 2. Normalized Smin/σ∞
2a with E∞/σ∞ for H∞/σ∞ = −10−4 C2/(Ns2). 
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changed from negative to positive, i.e., with H∞/σ∞ =10−4 C2/(Ns2), the curves for different Vf would 
intersect one another. Increase in Vf would further benefit the critical normal stress because this 
would decrease Smin/σ∞

2a giving rise to even lower critical stress. The increase in critical stress with 
Vf starts when the applied electric field to normal stress ratio becomes larger than 5 x 10−3 m2/C. 
Refer to Fig. 3. 
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4. CONCLUDING REMARKS 

The multiscaling character of the problem is inherent in the piezoelectric and piezomagnetic 
material due to the coupling of mechanical, electrical and magnetic effects. When the influence of 
material inhomoneity becomes time dependent, the behavior becomes one of non-equilibrium. This 
implies that the local properties can no longer be homogenized in size and time. This fundamental 
character of small specimen behavior cannot be explained by using equilibrium mechanics and 
introducing non-linearity.  

This work provides some initial thoughts on how to distinguish and related quantities at the 
different size scales by using the magnetoelectroelastic related quantities at the different size scales 
by using the magnetoelectroelastic material as an example. Clearly, additional fundamental works 
need to be done to better understand how the various electromagnetoelastic parameters could be 
adjusted to retard crack growth. 

ACKNOWWKEDGEMENT 
The authors wish to acknowledge the partial support of this work by the US Army Research 

Office-Far East, US Army Research Office and US Air Force Office of Scientific Research under 
contract N62649-02-1-0007. 

REFERENCES 
 
[1] G. C. Sih (ed.), Mechanics of fracture, vol. I – VII, Noordhoff International Publishing, Leyden, 

1973 –1981. 

Fig. 3.  Normalized Smin/σ∞
2a with E∞/σ∞ for H∞/σ∞ = 10−4 C2/(Ns2). 



[2] G. C. Sih, Implication of scaling hierarchy associated with nonequilibrium: filed and particulate, 
J. of Theoretical and Applied Fracture Mechanics, 37(3) (2001) 335-369.  

[3] G. C. Sih, Micromehanics associated with thermal/mechanical interaction of polycrystals, in: G. 
C. Sih (Ed.), Mesomechanics 2000: Role of Mechanics for Development of Science and 
Technology, vol. 1, Tsinghua University Press, 2000, 143-152. 

[4] G..C. Sih, Thermomechanics of solids: nonequilibrium and irreversibility, J. of Theoretical and 
Applied Fracture Mechanics, 9(3) (1988) 175-198. 

[5] G. C. Sih, Mechanics and physics of energy density and rate of change of volume with surface, J. 
of Theoretical and Applied Fracture Mechanics, 4(3) (1985) 157-173. 

[6] G. C. Sih, Some basic problems in non-equilibrium thermomechanics, In: S. Sienietyez and P. 
Salamon (Eds), Taylor and Franciss,New York, 1992, 218-247.  

[7] G. C. Sih and H. Liebowitz, Mathematical theories of brittle fracture, Mathematical 
fundamentals of fracture, in: H. Liebowitz (Ed.), Academic Press, New York, 2 (1968) 67-190. 

[8] G. C. Sih, Fracture mechanics of engineering structural components, eds. G. C. Sih and L. Faria, 
Fracture Mechanics Methodology, vol.I, Martinus Nijhoff Publishers, The Netherlands, 1984, 
35-101. 

[9] G..C. Sih, Mechanics of Fracture Initiation and Propagation, Kluwer Academic 1991 
 
 
 
 
 
 
 


