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ABSRACT 

In the present work buckling criteria of atomic lattices are established. An external force is considered to be 
dead (the vector of this force does not change a direction during deformation of a lattice). It is supposed that 
deformation of a lattice is initiated from its natural state (in this state forces of atomic interaction are equal to 
zero in all atomic pairs of a lattice). Singular points of two types of integral curves are considered: turning 
points (corresponding to the maximum loads) and bifurcation points of solutions of a quasi-static deformation 
problem. The assumption that the singular point may be both a turning point and a bifurcation point simulta-
neously is admitted. A loss of stability of solutions of the equilibrium equations of atomic lattices is investi-
gated. Stability criteria of equilibrium states with respect to dynamic perturbation introduced into the lattice 
through specifying the initial velocity vector are obtained. It is shown that unstable, according to Lyapunov, 
equilibrium equation solutions arise under quasi-static deformation of an atomic lattice just after the singular 
points occur on the integral curve. Post-critical deformation of an atomic lattice corresponds to its buckling 
after the loss of stability of the solution takes place.   
 

1  INTRODUCTION 
The necessity of the solution of nonlinear problems on the deformation of atomic lattices arises in 
connection with an attempt to describe adequately the initiation and evaluation of a crack in a solid 
undergoing stretching and shift loads. Phenomenological models of fracture of solid bodies do not 
give a correct pattern of distribution of stresses and strains near the crack within the framework of 
continuum mechanics. In particular, the solution of problems within the framework of linear frac-
ture mechanics results in infinite values of stresses and strains in the tip crack for a linear elastic 
material model. This fact does not agree with finite values of interaction forces of atoms, of which 
the solid body consists.  

The attempts to create a more correct model of fracture of solids result in the initiation and 
evaluation of the crack at an atomic level [1,2] when the initiation of the crack is induced by the 
buckling of an atomic lattice. A great difference between the strength obtained experimentally and 
a theoretical one is due to foreign atoms and vacancies in an atomic chain [3]. The buckling of a 
four-atoms cell as the mechanism of monocrystal destruction is considered in [4]. By ‘buckling 
phenomena’ we mean: the achievement of maximum interatomic forces [1], the branching solu-
tions of equilibrium equations [2,3], and the achievement both of the maximum by external force 
on the ‘atom displacements vs. external force’ curve and of the forces which concern the branch-
ing solutions of equilibrium equations [4].  

General formulations of the equations on quasi-static deformation of an atomic lattice are 
presented in [5,6], and the maximum and bifurcation loads correspond to singular points of inte-
gral curves of these equations when the tangential stiffness matrix of an atomic lattice degenerates. 
Here the turning points of the integral curve (where the maximum load is reached) may coincide 
with those of bifurcation. The algorithm on numerical solution of problems on quasi-static defor-
mation of an atomic lattice is developed. The solutions of some problems on deformation of 
atomic chains and cells are obtained. In these solutions, singular points of integral curve are ob-
tained. It is found that they are both turning points and bifurcation ones. It is noted that more com-
plex forms of monocrystal destruction, in comparison with those obtained in [4], correspond to 
such points. Vector, scalar and variational forms of the nonlinear equilibrium/motion equations of 



atomic lattices are presented in [7]. Obtained in more exact form than in [5, 6], the expression of a 
tangential stiffness matrix of an atomic lattice allows us to take into account both change of length 
of the straight line segment connecting atoms in pair and its rotation.  

In the present work, a loss of stability of solutions of the equilibrium equations of atomic lat-
tices is investigated. Stability criteria of equilibrium states with respect to dynamic perturbation 
introduced into the lattice through specifying the initial velocity vector are obtained. External 
forces are assumed to be dead. It is shown that unstable, according to Lyapunov, equilibrium equa-
tion solutions arise under quasi-static deformation of an atomic lattice just after the singular points 
occur on integral curve. Post-critical deformation of an atomic lattice corresponds to its buckling 
after the loss of stability of the solution takes place. 

  
2  THE NONLINEAR EQUATIONS ON DEFORMATION OF ATOMIC LATTICES  

The motion equations of an atomic lattice in a vector form are as follows [7]  
 0 0( ) (0) (0)+ = , = , = .MU F U R U U U V&& &  (1) 

Here M  is a diagonal positive defined mass matrix of a lattice; NEQR∈U  is a displacement vector 
of atoms of lattice  
 1 2[ ]T

NEQU U … U= , , , ;U  (2) 
R  is a vector of external forces; the index ‘ T ’ designates transposition operation; the point above 
value designates its derivative on time t ; 0U  and 0V  are the prescribed vectors of initial values of 

the displacement vector U  and velocity vector U&  of an atomic lattice.  
The scalar form of the motion equations has the form [7]  

 [ ( )]T T NEQR+ = ∀ ∈ .W MU F U W R W&&  (3) 
We consider the potential law of atomic (molecular) interaction in pair  
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where eV  is the potential energy (for example, Lennard – Jones) of atomic pair when only the 
central forces of interaction of atoms f  depending on their distance r  are taken into account. In 
[7], it is offered to define a vector F  of internal forces of an atomic lattice using the scalar form of 
the motion equations and assembly operation [8] of the vectors of internal forces for all atomic 
pairs of a lattice. The vector of internal forces for atomic pair has the form [5-7]  
 [ ]e T Tf= , ≡ − , ,F B B e e  (5) 

where e  is the unit length vector directed along the segment connecting atoms in the pair in the 
current (deformed) state. Potential energy of an atomic lattice ( )V U  is defined by summing poten-
tial energy of all atomic pairs  
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where M is a total number of all atomic pairs of a lattice.  
We obtain the equilibrium equations from Equation (1) by omitting inertial forces  

 ( ) = .F U R  (7) 
Let us assume the external force to be dead (i.e., this vector does not change its direction dur-

ing deformation) such as  
 0λ= ,R R  (8) 

where 0R  is the constant vector due to distribution of external forces in a lattice and λ  is the pa-
rameter describing intensity of the application of external forces.  



We define a total potential energy of an atomic lattice as  
 0( ) ( ) Te V λ≡ − .U U U R  (9) 

We find the differential of total potential energy [7] 
 0( ) [( ( ) ]T NEQde d d d Rλ, = − , ∈ .U U U F U R U  (10) 
The variational formulation of the equilibrium equations is reduced to the scalar equation  
 ( ) 0 .NEQde d d R, = ∀ ∈U U U  (11) 
This equation coincides with the equation obtained from Equation (3) by omitting inertial forces  
 0[ ( ) ] 0T NEQd d Rλ− = ∀ ∈ .U F U R U  (12) 

The stationarity principle of total potential energy of an atomic lattice [7] confirms equivalence of 
the equilibrium equation  
 0( ) λ=F U R  (13) 
and variational Equations (11) or (12). 
 

3  EQUATIONS ON QUASI-STATIC DEFORMATION OF AN ATOMIC LATTICE  
Let us introduce a monotonously growing parameter τ  describing quasi-static deformation of an 

atomic lattice (e.g., this parameter may be taken as the value λ  in Equation (13), as the prescribed 
displacement of some atom, etc). Differentiating the left- and right-hand sides of (13) with respect 
to τ  and adding initial conditions, we obtain  
 0 0( ) (0)λ′ ′= , = ,K U U R U U  (14) 

where the prime designates derivative of the value with respect to the parameter τ . Here ( )K U  is 
a symmetric tangential stiffness matrix of an atomic lattice  
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Elements of this matrix are defined following the scalar form of Equation (14) 
 0( )T T NEQRλ′ ′= , ∀ ∈W K U U W R W  (16) 

and assembly operation [8] of tangential stiffness matrices of all atomic pairs. The expression of a 
tangential stiffness matrix of the atomic pair is presented in [5,6] with allowance for the change of 
length of a segment connecting atoms. The refined matrix expression taking into account rotation 
of this segment is presented in [7].  

We introduce a scalar function of a velocity vector of an atomic lattice  

 0

1
( )

2
T T NEQI Rλ′ ′ ′ ′ ′ ′≡ − , ∈ .U U K U U R U  (17) 

Let us define the differential  
 0( ) ( )T NEQdI d d d Rλ′ ′ ′ ′ ′ ′, = − , ∈ .U U U K U R U  (18) 
The variational formulation of the quasi-static deformation equations is  
 ( ) 0 NEQdI d d R′ ′, = ∀ ∈U U Ù  (19) 

or  
 0( ) 0 .T NEQd d Rλ′ ′ ′ ′− = ∀ ∈U K U R U  (20) 
These equations are equivalent to the vector form of Equation (14).  
 

4  SINGULAR POINTS OF INTEGRAL CURVES OF QUASI-STATIC DEFORMATION 
EQUATIONS OF AN ATOMIC LATTICE  

The points of an integral curve when a matrix K  degenerates, i.e., the equality  



 det 0= ,K  (21) 

is satisfied, are named as singular. Let iW  ( 1 1i I I= , , ≥ ) be the vectors constituting a basis for 
the null-space of a matrix K .  

Identifying consecutively a vector W  in (16) with vectors iW , we obtain the conditions for 
existence of the solution of Equation (14) at singular point  
 0 0 ( 1 )T

i i Iλ ′ = = , .W R  (22) 

Let us 1I = , i.e., the basis for the null-space of a matrix K  consists of a unique vector 1W . Then 
the following variants are possible [9] 
 1 0 1 0(1) 0 0 (2) 0 0.T Tλ λ′ ′= , ≠ , ≠ , =W R W R  (23) 
In the first case, the singular point is a turning point, and in the second case, the singular point is a 
bifurcation point. In the latter case, for one point of an integral curve it is possible to define two 
vectors Ù  corresponding to two solution continuations.  

At 1I > , we admit that the singular point may be both a turning point and a bifurcation one 
simultaneously [5,6]. Let 2I = , then in this case  
 1 0 2 00 0 0T Tλ ′ = , ≠ , = .W R W R  (24) 

Let us introduce the quadratic form  
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2

T NEQJ R≡ , ∈ .W W K U W W  (25) 

Let the equilibrium state of an atomic lattice satisfy Equation (13). Continuation of the solution 
from this equilibrium state satisfies Equation (14). If condition (21) is fulfilled for such equilib-
rium state, it is named as eigenstate. We formulate a sufficient condition of absence of eigenstates.  
Theorem 1 (Sufficient condition of absence of eigenstates). If the quadratic form ( )J W  is posi-
tive defined, i.e.,  
 ( ) 0 and ( ) 0 0NEQJ R J≥ ∀ ∈ = ⇔ = ,W W W W  (26) 

then the equilibrium state is not eigenstate. 
 

5  STABILITY OF EQUILIBRIUM STATES OF ATOMIC LATTICES  
Let an atomic lattice be in an equilibrium state so that Equation (13) holds. Let this lattice be devi-
ated from an equilibrium state by a small perturbation, i.e., the prescribed initial velocity 0V . We 
investigate the perturbed motion of the atomic lattice in the vicinity of this equilibrium state. Let 
U  designate a displacement vector of the perturbed motion so that motion equation (1) holds, i.e., 

 0 0( ) (0) 0 (0)λ+ = , = , = .MU F U R U U V&& &  (27) 
If the equilibrium configuration with a displacement vector U is considered as a point of the inte-
gral curve of Equation (14), then described by Equation (27), the process of perturbed atomic lat-
tice motion is supposed to develop in natural time t. Here the parameter of deformation τ  is fixed. 

We introduce a designation  
 ≡ − .q U U  (28) 

From Equations (13) and (27), we obtain the following homogeneous equation with respect to a 
vector q   

 0( ) ( ) 0 (0) 0 (0)+ − = , = , = .Mq F U F U q q V&& &  (29) 
Let us define a total energy of an atomic lattice  
 E T e≡ + ,  (30) 
where T  is kinetic energy of an atomic lattice  
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TT ≡ .U U M U& & &  (31) 

For an equilibrium configuration we obtain  
 0( ) ( ) ( ) TE e V constλ, = = − = ,U U U U U R&  (32) 

and for the perturbed motion we get 

 0( ) ( ) ( ) ( ) ( ) TE T e T V λ, = + = + − .U U U U U U U R& & &  (33) 
Let us define  
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Let us find expression for e∆   
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From Equations (33) and (34), using smallness of q , we obtain  

 ( ) ( )E T J∆ = + .q q&  (36) 

Let the condition (26) of positive definiteness of the quadratic form ( )J q  be satisfied for a 

concerned equilibrium configuration. Then  
(1) ( ) 0E ⋅∆ =  for 0 t< < ∞ ;  

(2) 0 ( 0 o r 0)NEQE R∆ > ∀ , ∈ ≠ ≠q q q q& & ;  

(3) 0for 0E∆ = = =q q& . 
Hence, it is possible to identify E∆  with Lyapunov function [10]. From this it follows that we can 
prove Theorem 2 by using Lyapunov’s second (direct) method.  
Theorem 2 (Sufficient condition of stability of equilibrium state of an atomic lattice). If the quad-
ratic form ( )J W  is positive defined, i.e., Equation (26) is valid, then the solutions of Equations 
(13) are stable in the sense of Lyapunov. 

We assume that investigating Lyapunov stability of solution (13) of Equation (29) may be 
performed on a first approximation. Stability research on a first approximation is reduced to defi-
nition of stability of the trivial solution  
 0=q  (37) 
with the help of the equation  
 0( ) 0 (0) 0 (0)+ = , = , = ,Mq K U q q q V&& &  (38) 
obtained due to linearization of Equation (29).  

The analysis of stability of solution (37) on Lyapunov’s first approximation does not reveal 
the stability of source nonlinear system in case the quadratic form J  is positive defined or semi-
defined. If the quadratic form J  is not defined (there is at least one vector NEQR∈W  such that 

( ) 0J <W ), then solution (13) is unstable according to Lyapunov.  
Summarizing investigations of stability of the solution U  of nonlinear Equation (29), we ob-

tain the following criterion of stability of solution (13) according to Lyapunov’s second method 
and on a first approximation approach:  

 

positivedefined stable
( ) is positivesemi defined equilibriumstateis undefined .

undefined unstable
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6  COMPARISON OF CRITERIA FOR ABSENCE OF EIGENSTATES AND STABILITY OF 
EQUILIBRIUM STATES  

From formulations of Theorems 1 and 2 it follows that the condition of positive definiteness of the 
quadratic form ( )J W  is simultaneously sufficient condition of both absence of eigenstates and 
stability of equilibrium states. At the same time this condition is also necessary for stability of 
equilibrium states (except for those ones where the quadratic form is semi-defined), but for ab-
sence of eigenstates this condition is unnecessary. To confirm it, the condition of negative defi-
niteness of ( )J W  may be presented as a sufficient condition of absence of eigenstates.  

It is possible to deduce the important practical conclusion from coincidence of the above suf-
ficient conditions: in solving a problem of quasi-static deformations of an atomic lattice under 
dead load, the status of equilibrium states (points of an integral curve) with respect to Lyapunov 
stability criteria is automatically determined. If quasistatic deformation of a lattice is initiated from 
a natural configuration (forces of atomic interaction f  are equal to zero in all atomic pairs), then 

equilibrium configurations are stable, according to Lyapunov, before bifurcation points or turning 
ones occur on an integral curve.  

7  CONCLUSION  
It is presented that in achieving singular points of an integral curve the regime of quasi-static de-
formation of an atomic lattice may be maintained only by a special way. In a general case, in 
achieving singular points (bifurcation and turning points) the solutions of static equilibrium prob-
lems are unstable according to Lyapunov and at a small perturbation a quasi-static regime of de-
formation of the atomic lattice changes into a dynamic one.  
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