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ABSTRACT

A generalized damage model is presented. Built within the thermodynamics framework,
it assumes a damage evolution governed by the main dissipative mechanim: plastictity for
metals, internal sliding with friction for concrete and filled elastomers. The model applies to
different classes of materials but also to different kinds of loadings, monotonic and fatigue
loadings. From the Continuum Damage Mechanics point of view, the number of cycles to
rupture in fatigue is reached when the damage D equals the critical damage Dc. Examples
of calculated fatigue curves are given for different materials.

1. INTRODUCTION

Continuum Damage Mechanics (CDM) is a powerfull tool to deal with failure of materials
and structures. Damage is considered as part of the material behavior. CDM gives a
framework to write the damage constitutive equations and to extend them to 3D, therefore
to structures computations.

Lemaitre damage evolution law of a damage rate governed by plasticity but also enhanced
by the elastic energy density is able to deal with many situations: ductile failure, fatigue,
creep and creep-fatigue of metals or polymers [1, 2]. For materials such as composites,
concrete and filled elastomers, no plasticity occurs as other specific dissipative mechanisms
take place and Lemaitre damage law seems useless.

The study of these mechanisms [3, 4, 5] exhibits a general form for the thermodynamics
potential (Helmholtz specific free energy). It allows for an extension of plasticity coupled
with damage framework (section 3 ) to more general constitutive models with internal sliding
and friction (sections 2, 4 and 5).

2. GENERAL THERMODYNAMICS MODEL

The idea for a unified damage model valid for many materials is to relate the damage rate to
the main dissipative mechanism, often internal sliding and friction, and to consider damage
as governed by a cumulative measure of the internal sliding. This applies to metals for which
internal slips are mainly due to dislocations creation and evolution, but also to non metallic
materials such as concrete with internal sliding with friction of the microcracks and such
as filled elastomers in which a dissipative phenomenon occurs due to internal sliding of the
macro-molecular chains on themselves and on the black carbon filler particules.

2.1. Thermodynamics Variables
Define V = [εεεπ,aaa, q,D] as internal variables associated with A = [−σσσπ,xxx,Q,−Y ]. The
physical meaning of these thermodynamics variables depends on the type of material and
of the physical dissipative mechanisms. The strain εεεπ due to internal sliding is an internal
inelastic strain (equal to the plastic strain εεεp in plasticity) and Y is the strain energy release
rate density.



2.2. State and evolution laws: generalized damage model
The general expression for the state potential allowing to couple damage and internal friction
reads [3, 4, 5]:

ρψ = (1−D) · w1(εεε) + g(D) · w2(εεε− εεε
π) + ws(q,aaa) (1)

where w1 and w2 define the strain energy density and ws the stored energy density, function
of the scalar variable q and of the tensorial variable aaa. The function g(D) is simply taken
as g(D) = 1−D in the following.

The state laws read A = ρ ∂ψ
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,
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They naturally define the effective stresses σ̃σσ, σ̃σσπ such as the elasticity law written in terms
of strains and of effective stresses does not depend explicitly upon D (strain equivalence
principle).

Consider the non associated dissipative potential,

F = f + Fx + FD (3)

where:

- f = ‖σ̃σσπ−xxx‖−Q−σs < 0 defines the reversibility domain, ‖.‖ is a norm in the stresses
space (not necessary von Mises norm) and σs is the reversibility limit.

- the functions Fx =
γ

2Cx
xxx : xxx and Q = Q(q) model the internal sliding nonlinearity.

Fx models nonlinear kinematic hardening for metals (Armstrong-Frederick law), it
accounts for strain softening and Mullins effect in elastomers [6].

- FD =
S

(s+ 1)(1−D)

(

Y

S

)s+1

is the damage potential with S and s the damage pa-

rameters. It leads to Lemaitre damage evolution for metals [1] and to its generalization
to other materials.

The evolution laws derive from the dissipative potential through the normality rule V̇ =
−µ̇ ∂F

∂A
with µ̇ a Lagrange multiplier given by the consistency condition f = 0 and ḟ = 0 for

non viscous materials or given by a viscosity law for viscous materials. π̇ = µ̇/(1 − D) is
found equal to the norm of the inelastic strain. This defines the cumulative measure π of
the internal sliding,

π =

∫ t

0

‖ε̇εεπ‖dt (4)



which will recover the accumulated plastic strain as p =
∫ t

0

√

2
3
ε̇εεp : ε̇εεpdt in plasticity.

The generalized damage evolution law is obtained as:

Ḋ =

(

Y

S

)s

π̇

D = Dc −→ mesocrack initiation

(5)

which corresponds to damage governed by the main dissipative mechanisms through π̇ and
where Dc is the critical damage at mesocrack initiation.

3. CONTINUOUS DAMAGE AND FATIGUE OF METALS

3.1. Elasto-plasticity coupled with damage
For metals set εεεπ = εεεp (the plastic strain) and consider r = q, R = Q, XXX = xxx, ααα = aaa as
hardening variables. Elasto-plasticity coupled with damage is then the particular case:

- w1 = 0, ws(r,ααα) = G(r) + 1
3
C ααα : ααα for the thermodynamics potential written

ρψ =
1

2
(1−D)(εεε− εεεp) : EEE : (εεε− εεεp) +G(r) +

1

3
C ααα : ααα (6)

- f =

(
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)

eq

−R−σy for the yield fonction. The von Mises norm (.)eq is used

and σy = σs is the yield stress of the material.

Lemaitre damage evolution law is recovered:

Ḋ =

(

Y

S

)s

ṗ (7)

3.2. Calculation of Manson-Coffin curve for metals
The damage model allows also to calculate the failure conditions for low cycle fatigue loading.
Assume here a symmetric periodic loading between σmin = −σMax and σMax.

The increment of damage per cycle δD
δN

comes from a first integration of the uniaxial dam-
age law, in which the damaged material is considered as perfectly plastic: σ

1−D
≈ σMax =

const, Y = σ2/2E(1−D)2 ≈ σ2
Max/2E,

δD
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)s
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where ∆εp is the plastic strain increment over half a cycle. A second integration gives the
number of cycles of rupture NR corresponding to the critical value of the damage Dc,

NR =
Dc

2∆εp

(

2ES

σ2
Max

)s

(9)

which, considered altogether with a cyclic plasticity law, allows to plot the calculated
Manson-Coffin curve of the material ∆εp vs NR [1, 2].



4. CONTINUOUS DAMAGE AND FATIGUE OF CONCRETE

4.1. Elasticity with internal friction coupled with damage
The general thermodynamics framework of section 2 allows to derive constitutive equations
for quasi-brittle materials describing damage induced by mechanical loadings and its conse-
quences in terms of hysteresis, internal friction and rupture.

- The potentials w1 and w2 are quadratic functions so that

ρψ = (1−D)

[

1

2
εεε : EEE1 : εεε+

1

2
(εεε− εεεπ) : EEE2 : (εεε− εεεπ)

]

+G(q) +
1

2
Cx aaa : aaa (10)

and Hooke tensor is EEE = EEE1 +EEE2.

- The internal sliding criterion f , the potential Fx and FD are those defined in section
2.2.

EEE1, EEE2, σs, Cx, γ, S, s are the material parameters (tensorial or scalar) to which one adds
the critical damage Dc for mesocrack initiation.

The damage evolution law for concrete submitted to monotonic, cyclic or seismic loading
is the generalized damage law,

Ḋ =

(

Y

S

)s

π̇ (11)

4.2. Monotonic response and fatigue curve of concrete in compression
For a monotonic compression test, the response of this model is presented in figure 1a. The
crack initiation criterion D = Dc = 0.9 allows to compute the fatigue curve from Continuum
Damage Mechanics equations (figure ??b).
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Figure 1: (a)-Monotonic response in compression, (b)-Computed fatigue curve

5. CONTINUOUS DAMAGE AND FATIGUE OF ELASTOMERS

Elastomers may be considered as hyperelastic with internal friction coupled with damage
[6]. Internal viscosity is an additional dissipative mechanism and is not taken into account
here.



5.1. Hyperelasticity with internal friction coupled with damage
Lemaitre damage law governed by the accumulated plastic strain rate is useless. Fortu-

nately, its generalization to any dissipative phenomenon described in section 2.2 applies. It
just needs to be formulated within the finite strains framework. The strain EEE = 1

2
(CCC − 111)

is the Green-Lagrange strain tensor, with CCC = FFFT · FFF the dilatation tensor and FFF the
tranformation gradient. The associated stress is the second Piola-Kirchhoff stress tensor SSS .

Modeling internal friction of elastomers needs two internal variables. They are the inter-
nal inelastic strainEEEπ (instead of εεεπ in case of small strains) associated with the opposite of a
stress denoted SSSπ and the internal sliding variable aaa associated with the residual micro-stress
tensor xxx.

The state potential is written in the reference configuration,

ρ0ψ = (1−D) [w1(EEE) + w2(EEE −EEEπ)] +
1

2
Cxaaa : aaa (12)

with ρ0 the density of the underformed material and where:

- w1 is an hyperelastic energy density such as Mooney or Hart-Smith densities,

- for simplicity w2 is the first term (the second) of Mooney-Rivlin development with
inelastic strain EEEπ giving a non constant derivative,

w2 = 4C20 [trace(EEE −EEEπ)]
2

= C20 (I1 − 2 traceEEEπ − 3)
2

(13)

For incompressible materials the stresses are obtained as
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with P the internal pressure due to incompressibility. The state laws define the effectives
stresses S̃SS = SSS/(1 −D), S̃SS

π
= SSSπ/(1 −D), the residual internal stresses xxx and the energy

density release rate Y = w1 + w2. The reversibility criterion is f = ‖S̃SSπ − xxx‖ − σs < 0
and σs is the reversibility limit. The evolution laws are obtained as in section 2.2 from the
normality rule with the same definition for Fx and FD, the damage law being still given by
eqn (5) but with π =

∫ t

0
‖ĖEEπ‖dt the cumulative measure of the internal sliding.

Note that with neither damage nor viscosity the model represents the hysteresis and the
stress softening of filled elastomers [6, 7].

5.2. Calculation of the fatigue curve for elastomers
In the same manner the model of hyperelasticity with internal friction coupled with damage
allows to calculate the number of cycles to rupture NR in fatigue of elastomers. A periodic
elongation λ(t) is applied (it is the larger principal component of FFF ) with constant amplitude
∆λ and mean elongation λmoy.

The calculated fatigue curve ∆λ vs NR is given in figure 2 for a filled Styrene Butadiene
Rubber (SBR). The measured elongation at rupture in tension λR = 7.2 is also reported on
the diagram.



Figure 2: Fatigue curve of a filled SBR for λmoy = 2.53

6. CONCLUSION
The present work extends elasto-plasticity coupled with damage framework built mainly for
metals and polymers to other materials such as concrete and filled elastomers. The proposed
model applies for monotonic as well as fatigue loadings. Written in the thermodynamics
framework and in 3D, it will allow for the computation of failures of structures submitted
to complex loadings (multiaxial, non proportional, multilevel or random fatigue. . . ).

The model introduces a few damage parameters: S, s and the critical damage Dc.
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