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ABSTRACT 
This paper is dedicated to an attempt to model the link between random microstructures and initiation 
characteristics of high-cycle fatigue of  polycrystals (scatter, grain size effect). Crack initiation often takes place 
along slip bands. This mechanism is modeled using an energy criterion. Statistical computations permit us to take 
into account random microstructures. Predictions are compared to experimental results and are discussed with 
respect to the influence of crystalline cubic elasticity on scatter. A strong cubic elasticity anisotropy (austenite, 
copper) induces scatter in the resolved shear stress in the well-oriented grains because of neighbour effects. But it 
not high enough for inducing a significant scatter in the number of cycles to crack nucleation for usual specimen 
and grain sizes. 
 

1 INTRODUCTION 
Based on observations, the main part of the high-cycle fatigue lifetime corresponds to initiation and 
propagation of microstructurally short cracks (stage I) [1]. During stage I, the local microstructure 
(crystallographic orientations, grain sizes…) is of great importance. Initiation and propagation/arrest of 
a given short crack depend in fact on its local environment [2]. These observations explain partially the 
high scatter in the number of cycles to failure which is classically observed when carrying out high-
cycle fatigue tests [3]. Even if two specimens are identical at the macroscopic scale, their local 
microstructures at the grain scale are different. Surface defects and experimental problems are other 
sources of scatter, but even if they are the smallest possible, a high degree of scatter is still observed. 
Concerning high-cycle fatigue properties, a grain size effect is usually observed too [4] and sometimes 
a specimen size effect [5]. All these observations could be characteristic of the initiation and/or short 
crack propagation periods. For the sake of simplicity, only short crack initiation is considered in the 
following. This is defined as the germination of a crack of one grain size length (before eventually 
propagating through other grains). This paper proposes a model of the link between random 
microstructures and initiation characteristics of high-cycle fatigue of polycrystals. Modeling is divided 
into two steps. First, the most common crack initiation mechanism in polycrystals is modeled using an 
energy criterion following the proposition of Mura and co-workers [6,7]. Second, thanks to statistical 
computations,  random microstructures are taken into account. Predictions are compared to 
experimental results and discussed with reference to the influence of cubic elasticity. 
 

2 MODELLING 
 
1.1 Crack initiation in a given (well-oriented) grain. 
Based on large number of observations on metal/alloy  single crystals and polycrystals, crack initiation 
along (or inside) fatigue slip bands is the one of the main causes of damage initiation [8]. Plastic strain 
is localized in thin slip bands which appear in well-oriented grains (those with a high shear stress on 



one of their slip systems). They are often associated to Persistent Slip Bands (PSBs). Cycle by cycle, 
accumulated plastic slip, stored energy and stress level increase due to plastic irreversibilities [8,6,7]. 
Finally, cracks appear along slip bands and then can propagate. In the 80s, Mura and co-workers 
proposed a crack initiation criterion based on an energy balance. Cracks appear only when the cycle by 
cycle stored energy is higher than the surface energy required for free surface creation. The variation 
of stored energy between the initial and the cracked solid would then be higher than the required 
surface energy. The initiated crack length is assumed to be of one grain size. This model gives the 
number of cycles required for crack initiation in a grain whose well-oriented slip system is submitted 
to a  resolved shear stress τ: 
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with C a material parameter, µ and υ the isotropic elastic parameters, γs the free surface energy, Φ the 
grain size, p the irreversibility factor and τ0 the critical shear stress for slip band apparition [7]. 
 
1.2 Statistical computations.  
 
In the following, only surface grains are considered because crack initiation occurs preferentially on 
the free surfaces of the specimen [7]. The specimen gauge characteristic size  is denoted as D (length 
and diameter order of magnitude). There are about k=(D/Φ)2 surface grains along the gauge length 
(Fig. 1 a)). If a crack initiates in the ith grain, it is assumed to appear along its most loaded slip plane 
submitted to a τi shear stress. All the grains are assumed to have the same grain size. The first crack 
appears in the grain whose maximal shear stress on its slip system is the highest of all the grains. 
Therefore, the number of cycles to initiation at the free surface of a specimen is: 
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The stress distribution of the shear stress in the k grains is now considered in order to compute 
the distribution of the number of cycles to initiation given by eqn (2). The cumulated probability of the 
resolved shear stress in a grain is denoted as Fτ(τ). For example if both cubic elasticity anisotropy and 
plasticity are neglected, the stress tensor is homogeneous in the polycrystal and is equal to the 
macroscopic one. For a tensile test, the resolved shear stress in the ith grain is given by: |τi|=fiΣ. The 
Schmid factor in the ith grain is denoted as fi. Then, the cumulated density is deduced from the Schmid 
factor cumulated density (Fig. 1 b)). It is given for a torsion test too. For a torsion loading, the tensile 
stress Σ should be replaced by 2T (T is the macroscopic shear stress). If cubic elasticity is rather 
anisotropic (copper, austenitic stainless steel) or (and) plasticity is (are) non-negligible, then more 
sophisticated shear stress distributions have to be computed (see discussion below). If the maximal 
resolved shear stress is smaller than τ, its value in each grain, τi, has indeed to be smaller than τ. As the 
stress field is homogeneous, the stress distribution in a given grain does not depend on the stress 
distributions in the other grains. This is why the product of the grain probabilities is obtained giving 



eqn (3).Whatever is the shear stress distributions Fτ, the maximal resolved shear stress distribution at 
the surface of the specimen is indeed given by: 
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For initiation before the Nini

th cycle, the resolved shear stress in at least one grain has to be higher than 
τ(Nini) which is defined as the stress satisfying eqn (1) for a given Nini value. 
Finally, the cumulated probability of the number of cycles to crack initiation is deduced: 
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Figure 1: a) polycrystal surface view, slip bands are visible; b) Schmid factor distribution in a random 
Face Cubic Centred (FCC) polycrystal (computations on a large number of grains whose 
crystallographic orientations are random). Tension-compression and torsion loadings. 
 
This distribution can be easily computed using eqns (1)-(4). It depends on the resolved shear stress 
distribution, material parameters, loading, specimen and grain sizes.  
 

3 FIRST RESULTS 
In this part, the resolved shear stress distribution using the Schmid factor distributions (Fig. 1 b), FCC 
polycrystal without macroscopic texture) are used. Material parameters correspond to an austenitic 
stainless steel. The scatter is evaluated using the N90/N10 ratio with N90 (N10) the predicted number 
of cycles for initiation in 90% (10%) of the specimen. Scatter effects are predicted for small k values 
(Fig. 2 a) and b), small specimen and large grain sizes). Scatter increases with decreasing applied 
stress, as is experimentally observed. But, for usual specimen and grain sizes, the predicted scatter is 
very small when compared with experimental results concerning scatter in the number of cycles to 
failure. For example, if k>400, the computed torsion scatter becomes negligible (this corresponds to 
D=2mm and Φ=0.1mm) (Fig. 3 a) and b)). These Figures are obtained when considering the grain size 
as constant. They show that there is no specimen size effect for usual specimen and grain sizes. It 
agrees with experiments which show that a specimen size effect is observed for usual specimen only if 
loadings leading to a stress gradient through the specimen thickness are applied (bending for example) 
[5]. 
 



  
Figure 2:  a) simulated Wöhler’s curve. Torsion, k=50. Probability of 10%, 50% and 90% of crack 
initiation among specimen; b) Scatter evolution with respect to the applied shear stress (N90/N10). 
Specimen and material parameters: k=50, Φ=0.025mm, τ0=125MPa, E=200GPa, υ=0.3 and 
Cµγs/Φp2(1-υ)2=106MPa-2.  
 

Grain size effect is reproduced. Two grain size effects are in fact taken into account. First, the 
number of cycles to initiation in a given grain is inversely proportional to its size (eqn (1)). This is 
due to the slip band geometrical factor which appears when solving the inclusion problem using 
either Eshelby’s solution (bulk slip band) [6] or Finite Element computations (surface slip band) 
[7]. Second, the statistical computations permit us to take into account the number of surface grains 
along the gauge length, k. The smaller is the grain size, the larger is the number of surface grains, 
k. Therefore, the maximal resolved shear stress among the k ones should be higher and the number 
of cycles to initiation should be smaller. But, for a given grain size, as shown by Fig. 3 a) and b), 
this effect is saturated when k is higher than 400. In this case, and with an usual specimen size, 
computations show that the maximal Schmid factor is already reached for larger grain sizes and a 
decrease of the grain size would not lead to an increase of the maximal Schmid factor and resolved 
shear stress. Finally, the first grain size effect dominates which gives a number of cycles to crack 
nucleation inversely proportional to the grain size. This agrees quite well with the experimental 
results of  Nagase et al. [4]. But, it should be noticed that our model predicts the influence of grain 
size on the numbers of cycle to initiation whereas Nagase et al. experiments permit the authors to 
evaluate the influence on the number of cycles to failure. 

 

  
Fig. 3: a) Evolution of the computed numbers of cycles of crack initiation with respect to the specimen 
size. Tension-compression ; b) Cyclic torsion (Tresca stress amplitude : 260MPa). 

 



4 DISCUSSION 
The predicted scatter is smaller than the observed ones. For example, the N90/N10 ratio observed 
during the experiments detailed in [3,5] is about 10. It can be either due to the crude hypothesis of our 
model or to a bias in the computation/experiment comparison (predicted scatter concerns crack 
nucleation whereas experimental scatter concerns both nucleation and propagation phases). Other 
scatter causes are involved too (defects). 

For computing the resolved shear stress and number of cycles to nucleation, a crude hypotheses 
has been made. The stress tensor was supposed to be homogeneous in the whole polycrystal. Some 
sources of heterogeneity and dispersion have been neglected such as crystalline cubic elasticity and 
plasticity. Because of its crystalline structure, the behaviour of each grain is not isotropic. And because 
of misorientations between neighbour grains, heterogeneities arise. As high-cycle fatigue and small 
applied stresses are considered, we focus on cubic elasticity. It applies to Face Cubic Centred (FCC) 
and Body Cubic Centred (BCC) crystals. It is defined by three parameters, C11, C12 and C44. An 
anisotropy factor is classically defined: a=2 C44/( C11- C12). It is equal to µmax/µmin with µmax (µmin) the 
maximal (minimal) elastic shear modulus obtained when considering all shear systems in a continuous 
framework. It is equal to 1 for an isotropic material. The anisotropy factor is high for copper (a=3.3) 
and austenite (a=3.4). The higher is the anisotropy factor, the more anisotropic is the metal. As the 
local elastic shear modulus (with respect to the shear system with the maximal macroscopic shear 
stress) varies strongly depending on the grain crystallographic orientation, large neighbour effects can 
be suspected. These effects have already been studied by Pommier [10]. But, in her study, neither well-
oriented grains nor resolved shear stress were considered even if they are of primary concern in fatigue 
damage initiation (see observations of [2,9]). To evaluate the neighbour effect involved, finite element 
computations are carried out (CASTEM2000 software). The mesh is composed of a small aggregate 
located at the free surface of a large macroscopic matrix. A well-oriented grain is located in the middle 
of the aggregate (Fig. 4 a)). The crystallographic orientations of the neighbouring grains are chosen 
randomly whereas the orientation of the well-oriented grain is kept constant. Three computation cases 
are considered: torsion test (the well-oriented slip system of the grain is of type A [7]) and tensile-
compression (either type A or B slip system [7]). For each case, computations are carried out for 40 
microstructures. The computation results show that two effects are involved. First, an average effect of 
the elastic anisotropy induces a decrease of the resolved shear stress in the well-oriented grain when 
compared to the macroscopic maximal shear stress. It concerns the resolved shear stress averaged on 
the 40 computations for each loading and type A/B case. The decrease is due to the fact that the well-
oriented grain elasticity shear modulus is smaller than the macroscopic one. Second, there is a scatter 
effect too. It is due to the random neighbour grain orientations.  
This more accurate grain shear stress distribution gives more scatter than a simple Schmid factor 
approach. But, even if this distribution is used for computing the number of cycles to initiation 
distribution, there are still enough grains with a high resolved shear stress at the surface of usual 
specimens to induce crack initiation with no delay at about the same numbers of cycles. And the 
predicted scatter in the number of cycles to initiation is once more negligible for usual specimen and 
grain sizes. After crack initiation, microstructure barriers such as grain boundaries can slow down 
more or less the stage I crack propagation. These could explain the scatter in the number of cycles to 
failure for high-cycle fatigue. Work is in progress for modeling the scatter effect due to the short crack 
propagation  [11]. 
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