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ABSTRACT

The paper presents an elastic-damage interface model developed with constitutive relations

based on nonlocal concepts. The main motivation for accepting to pay the cost of the extra com-

plexities induced by nonlocal features is rooted on the observation that in many mechanical circum-

stances the process zone, where decohesion develops, involves a spatially extended microstructure

which produces complex bridging spatial effects. Typically, spatial constitutive interaction can be

effectively modelled by integral nonlocal models. Along the paper the interface constitutive rela-

tions are developed following a thermodynamic consistent approach and the main features of the

proposed approach can be summarized as: (i) Nonlocal elasticity removes the stress singularity and

smooths stress distributions near the crack tip; (ii) Nonlocal damage interface ensures regularization

and then no solution jumps are produced and a mesh objective solution is expected, even without

invoking viscous regularization procedures. The evolution of the damage along the interface, and

the subsequent decohesion, are driven by nonlocal damage laws. Namely a spatial average (non-

local) energy release rate is responsible for the local damage activation function and the damage

flow rules are nonlocal as well. The paper deals only with the general theoretical framework of the

model leaving out of the presentation, for lack of space, relevant finite element implementation and

specific numerical results. Both topics are the subject of an ongoing research activity.

1. INTRODUCTION

In many mechanical situations the presence of continuous joints connecting elements is ob-

served. A meaningful analysis requires an accurate mechanical characterization of the joints,

usually modelled as interfaces connecting deformable bodies. Along the interfaces elastic and

inelastic phenomena develop such as strains localization or displacement discontinuities, de-

cohesion, sliding, rate dependency, etc. All the above phenomena change the behaviour of

the entire system and eventually affect the ultimate structural failure mode.

Examples of the use of interface models in structural problems can be found for masonry

structures (Giambanco et al. [1]) or for rock block interactions [Giambanco and Mròz

[2]). Interfaces play a central role for laminate composite structures; in fact, such kind

of structures are prone to delamination weakness. Many interface formulations deal with

composite delamination problems, using fracture (Point and Sacco [3]), or alternatively



damage approach (Allix et al. [4], Alfano and Cristfield [5]). Interface Damage Mechanics

(Chaboche et al [6]), applied to delamination problems, has been proved to be an efficient and

flexible tool capable to describe formation, development and propagation of delamination.

However, it has been shown that for avoiding the possibility of sudden solution jumps some

regularization technique is required, which is usually of viscous nature [6].

One of the main aspects emerging in modern constitutive modelling of materials, par-

ticularly when observed at small scales, is the crucial role of the micro-structure, i.e. inho-

mogeneity of components and presence of defects. Micro-structure might affects both the

reversible elastic behaviour and the path of formation and development of localized dam-

age. The actual discrete nature of the material often requires the application of nonlocal

constitutive relations. In nonlocal models the stress in a material point is not directly re-

lated to the kinematical state (strains and internal variables) at the same point, but rather

it depends on the kinematical state in a finite size neighbour region. Recently nonlocal

elasticity models of Eringen type (e.g. Eringen [7], Bažant and Jirásek [8]) have been fully

framed in a thermodynamic consistent framework (Polizzotto [9]) and also the failure local-

ization of damaging structures have been reformulated following nonlocal thermodynamic

arguments (Borino et al [10]). Very recently elasticity and damage nonlocal coupling has

been investigated by Polizzotto[11]. Beside an introductory paper (Borino et. al [12]), in the

authors’ knowledge nonlocal approaches have not been considered for interface modelling

so far, probably because structures with interface do not need a regularization for the loose

of ellipticity condition, as for continuum softening media. For interfaces, nonlocal models

should be adopted with the only intent to better reproduce an actual complex material

behaviour and for a more accurate valuation of the stress distribution.

The main subject of this paper is the presentation of the fundamentals of an integral

nonlocal formulation for both elasticity and damage in a coupled form.

2. NONLOCAL INTERFACE MODEL

Let us consider an interface layer in which all the mechanical properties are projected over

a surface of zero thickness. Figure 1. shows a a simple 2-D structure with a 1-D interface.

Figure 1. Sketch of a curved interface with it’s local relative displacements variables.

The kinematics of the interface is described by the relative displacement [u] ≡ u = u+−u−,

where u+ and u− are the displacements of the two opposite sides of the interface. For

the case of 1-D interfaces, the relative vector displacement u can be decomposed in two



components uI(s), where s is a curvilinear coordinate, ranging between 0 and L. The index

I can assume the values N and T , denoting respectively the relative displacement component

along the normal direction n(s) and the one along the tangential direction t.

In order to take into account elastic interactions among different points on the interface,

the deformation state, beside the local relative displacement uI(s), is defined by a further

nonlocal integral averaging measure of the spatial displacement differences, [11], given as

∆uI(s) = A(∆uI) ≡
1

Ωe
∞

∫ L

0
αe(r, s) [uI(r)− uI(s)] dr, (1)

where α(r) is a positive two-point spatial weight function which is symmetric, i.e. αe(r, s) =

αe(s, r) = αe(|s − r|) and dαe(|r|)/dr ≤ 0. A possible choice for α(r, s) is the Gauss error

function αe(r) = C exp(−r2/`2e), where C is a normalization factor and `e is the internal

length, a material parameter controlling the length of spatial interaction effects. In eq. (1)

the following definition have been adopted

Ωe(r) =

∫ L

0
α(|r − s|) dr; Ωe

∞ =

∫ ∞

−∞
α(|r|) dr, (2a, b)

which are measure of the representative volume. A nonlocal model based on the spatial dif-

ference was introduced by Borino, [10], for continuum damage problems and by Polizzotto,

[9], [11], for elasticity problems. The nonlocal operator A is self-adjoint and gives no contri-

bution for uI(s) constant. Figure 2 shows a sketch of the interface nonlocal regularization

features with respect to the opening displacement field uN (r) along a linear interface.

Figure 2. Sketch of the nonlocal difference displacement correction field ∆uN .

The damage along the interface is described by two internal variables, ωI(r), ranging between

0 (integrity) to 1 (fully damaged). Nonlocal damage fields are defined for considering spatial

cracking interactions

ω̃I(r) = Rd(ωI) ≡
[

1− Ωd(r)

Ωd
∞

]

ωI(r) +
1

Ωd
∞

∫ L

0
αd(r, s)ωI(s) ds, I = N,T (3)

where similar positions of eqs. (3) are adopted,with the only difference given by the damage

internal length parameter `d 6= `e, being related to the spatial damage interactions.



3. THERMODYNAMIC FRAMEWORK

In order to achieve a model which a-priori complies with thermodynamic requirements, the

following Helmholtz free energy functional density (for unit surface) is assumed:

ψ(uN , uT ,∆uN ,∆uT , ω̃N , ω̃T , ξ) = ψe(uN , uT ,∆uN ,∆uT , ω̃N , ω̃T ) + ψin(ξ), (4)

where ψe and ψin are the elastic-damage and the internal free energy. ξ is an internal

variable describing the damage hardening. We assume ψe in the following form

ψe =
1

2
(1− ω̃N )H(uN )K+

N u2
N +

1

2
H(−uN )K−

N u2
N +

1

2
(1− ω̃T )KT u2

T

+
1

2
(1− ω̃N )H(uN )K+

N ∆u
2
N +

1

2
H(−uN )K−

N ∆u
2
N +

1

2
(1− ω̃T )KT ∆u

2
T ,

(5)

where H(x) is the Heaveside function, i.e. H(x) = 1 if x ≥ 0 and H(x) = 0 for x < 0. The

state equations can be derived from the free energy function of eq. (5)

σ̄N :=
∂ψ

∂uN
=

[

(1− ω̃N )H(uN )K+
N +H(−uN )K−

N

]

uN ; σ̄T :=
∂ψ

∂uT
= (1− ω̃N )KTuT ;

(6a, b)

∆σN :=
∂ψ

∂∆uN

=
[

(1− ω̃N )H(uN )K+
N +H(−uN )K−

N

]

∆uN ≡ K∗
N ∆uN ; (6c)

∆σT :=
∂ψ

∂∆uT

= (1− ω̃N )KT ∆uT ≡ K∗
T ∆uT ; (6d)

ȲN := − ∂ψ

∂ω̃N
=

1

2
H(uN )K+

N (u2
N +∆u

2
N ); ȲT := − ∂ψ

∂ω̃T
=

1

2
K+

T (u2
T +∆u

2
T ) (7a, b)

χ :=
∂ψin

∂ξ
(8)

The stresses defined by eqs.(6), i.e. the stresses pertaining to the constitutive elastic rela-

tions, are not the true Cauchy stresses to be inserted in the equilibrium equations (Borino

and Polizzotto [13]). The true stresses σN , σT are derived by the second thermodynamic

principle as the Clausius-Duhem inequality enforced globally along the interface.

W ≡
∫ L

0
Dds =

∫ L

0

(

σN u̇N + σT u̇T − ψ̇
)

ds. (9)

Developing ψ̇ from eq. (5), taking into account eqs. (6) and (7)

ψ̇ =
∂ψ

∂uN
u̇N +

∂ψ

∂uT
u̇T +

∂ψ

∂∆uN

∆u̇N +
∂ψ

∂∆uT

∆u̇T +
∂ψ

∂ω̃N

˙̃ωN +
∂ψ

∂ω̃T

˙̃ωT +
∂ψ

∂ξ
ξ̇

= σ̄N u̇N + σ̄T u̇T +∆σN ∆u̇N +∆σT ∆u̇T + ȲN
˙̃ωN − ȲT

˙̃ωT + χ ξ̇

(10)

which substituted in eq. (9) gives

W =

∫ L

0
(σN u̇N+σT u̇T−σ̄N u̇N−σ̄T u̇T−∆σN ∆u̇N−∆σT ∆u̇T+ȲN

˙̃ωN+ȲT
˙̃ωT−χ ξ̇)ds ≥ 0.

(11)



The second principle can be alternatively enforced locally (pointwise) as

D = σN u̇N+σT u̇T−σ̄N u̇N−σ̄T u̇T−∆σN∆u̇N−∆σT∆u̇T+ȲN
˙̃ωN+ȲT

˙̃ωT−χ ξ̇+Pe+Pd ≥ 0,

(12)

where Pe and Pd are nonlocal residual functions related to elasticity and damage processes.

3.1 Nonlocal elastic deformation process

The inequality (12) holds for every deformation process, including the elastic nondissipative

ones for which ˙̃ωN = ˙̃ωT = ξ̇ = Pd = 0 and then eq. (12) particularizes

D = σN u̇N + σT u̇T − σ̄N u̇N − σ̄T u̇T −∆σN∆u̇N −∆σT∆u̇T + Pe = 0, (13)

which integrated along the interface, considering the insulation condition
∫ L

0 Pe ds = 0, gives

∫ L

0

(

σN u̇N + σT u̇T − σ̄N u̇N − σ̄T u̇T −∆σN∆u̇N −∆σT∆u̇T

)

ds = 0. (14)

Considering the definition (1), the following identity can be developed

∫ L

0
∆σI ∆u̇I ds =

∫ L

0
∆σI(s)A(∆u̇I) ds ≡

∫ L

0
∆σI(s)

1

Ωe
∞

∫ L

0
αe(s, r) [u̇I(r)− u̇I(s)] dr ds

=

∫ L

0

(

1

Ωe
∞

∫ L

0
αe(s, r)

[

∆σI(r)−∆σI(s)
]

dr

)

u̇I(s) ds ≡
∫ L

0
A(∆σI)u̇I(s) ds

(15)

which substituted into eq. (14) gives

∫ L

0

{

[

σN − σ̄N −A(∆σN )
]

u̇N +
[

σT − σ̄T −A(∆σT )
]

u̇T

}

ds = 0. (16)

Equation (16) is true for every field u̇I(s), then the interface Cauchy stresses reads

σI = σ̄I +A(∆σI). I = N,T. (17)

Having the interest of expressing the stresses in terms of the displacement fields, it is then

necessary to insert in eq. (17) the state laws given by eqs. (7), namely

σI = K∗
I uI +A

(

K∗
I (∆uI)

)

= K∗
I uI +A

(

K∗
IA(∆uI)

)

. (18)

Expanding the last term

A
(

K∗
IA(∆uI)

)

=

∫ L

0
JI(s, r)

[

uI(r)− uI(s)
]

dr, (19)

where

JI(s, r) =

∫ L

0

1

Ωe2
∞
αe(s, t)αe(t, r)K

∗
I (t) dt−

1

Ωe
∞
αe(s, r)

[

γe(r)K
∗
I (r) + γe(s)K

∗
I (s)

]

(20)

γe(s) =
1

Ωe
∞

∫ L

0
αe(s, r) dr, (21)



then the nonlocal interface “true” stress – strain relation is

σI(s) = K∗
I (s)uI(s) +

∫ L

0
JI(s, r)

[

uI(r)− uI(s)
]

dr, (22)

The relation (22) can be rewritten in alternative form as

σI(s) =
[

K∗
I (s)− K̄∗

I (s)
]

uI(s) +

∫ L

0
JI(s, r)uI(r) dr, (23).

where

K̄∗
I (s) =

1

Ωe2
∞

∫ L

0

∫ L

0
αe(s, t)αe(t, r)K

∗
I (t) dt dr−

1

Ωe
∞

∫ L

0
αe(s, r) γe(r) dr−γ2

e (s)K
∗
I (s). (24)

It is to remark that a similar interpretation given in [12] can be applied to eq. (23). In

fact, for a homogenous elastic material K∗
I (s) = const., the first local term is a boundary

correction term which goes to zero at points s far from the interface boundaries, s = 0 and

s = L. However, in the most common case, because of the inhomogeneity induced by the

development of damage (and also because of the different interface stiffness in traction and

compression state) the first local term is effective also far from the boundaries and gives an

important contribution for the spatial transition states. Examining eq. (22), as pointed out

by Polizzotto [11], it emerges that for uniform state of deformation uI(s) =const., no matter

of the etherogeneity induced by the damage distribution, the stress is σI(s) = K∗
I (s)uI

which is the actual relation for a purely local material, i.e. nonlocality is induced solely by

nonhomogeneous state of deformation.

The nonlocal residual function related to the elasticity can be recovered from eq. (13)

Pe = ∆σN A(∆u̇N )−A(∆σN ) u̇N +∆σT A(∆u̇T )−A(∆σT ) u̇T (25)

3.2 Nonlocal damage deformation process

Let us now consider an elastic-damage process. The dissipation (12), considering that the

relations (17) hold also for an elastic damaging process, transforms as

D = ȲN
˙̃ωN + ȲT

˙̃ωT − χξ̇ + Pd ≥ 0. (26)

Following the same arguments given in [12], we introduce the hypothesis that the dissipation

can be alternatively expressed as a bilinear form of the local fluxes ω̇I , ξ̇, namely

D = XN ω̇N +XT ω̇T − χξ̇ ≥ 0. (27)

where XI are the relevant variables (of nonlocal nature) to be thermodynamically associated

to the (local) damage fluxes ω̇I . Comparing eqs. (26) and (27) it follows that

Pd = XN ω̇N − ȲN
˙̃ωN +XT ω̇T − ȲT

˙̃ωT . (28)



Integrating eq. (28) along the all interface length and invoking the damage energy insulation

condition the following relation is obtained

∫ L

0
Pd ds =

∫ L

0

(

XN ω̇N − ȲN
˙̃ωN +XT ω̇T − ȲT

˙̃ωT

)

ds = 0, (29)

next, substituting the nonlocal definition of ˙̃ωI , given in eq. (4), we obtain

∫ L

0

{

XN (s) ω̇N (s)− ȲN (s)

[

(

1− Ωd(s)

Ωd
∞

)

ω̇N (s) +
1

Ωd
∞

∫ L

0
αd(s, r) ω̇N (r) dr

]

+XT (s) ω̇T (s)− ȲT (s)

[

(

1− Ωd(s)

Ωd
∞

)

ω̇T (s) +
1

Ωd
∞

∫ L

0
αd(s, r) ω̇T (r) dr

]

}

ds = 0

(30)

which can be rewritten as

∫ L

0

{[

XN (s)−
(

1− Ωd(s)

Ωd
∞

)

ȲN (s) +
1

Ωd
∞

∫ L

0
αd(s, r) ȲN (r) dr

]

ω̇N (s)

+

[

XT (s)−
(

1− Ωd(s)

Ωd
∞

)

ȲT (s) +
1

Ωd
∞

∫ L

0
αd(s, r) ȲT (r) dr

]

ω̇T (s)

}

ds = 0.

(31)

Equation (31) must be satisfied for every damage rate field ω̇I and then

XI(s) ≡ ˜YI(s) =

(

1− Ωd(s)

Ωd
∞

)

ȲI(s) +
1

Ωd
∞

∫ L

0
αd(s, r) ȲI(r) dr (32)

furthermore considering the state equations (8) one obtain

˜YI(s) =

[

1− Ωd(s)

Ωd
∞

]

1

2
K∗

I

(

u2
I +∆u

2
I

)

+
1

2Ωd
∞

∫ L

0
αd(s, r)K

∗
I

(

u2
I(r) + ∆u

2
I(r)

)

dr, (33)

from which the nonlocal elasticity–nonlocal damage coupling effect can be envisaged. The

expression of the damage residual function of eq (28) reads

Pd =
(

˜YN ω̇N − ȲN
˙̃ωN

)

+
(

˜YT ω̇T − ȲT
˙̃ωT

)

. (34)

The dissipation inequality involving only local flow variables is

D = ˜YN ω̇N + ˜YT ω̇T − χ ξ̇ ≥ 0. (35)

Since in eq. (35) the variables associated to the local fluxes are ˜YN , ˜YT and χ, the damage

activation relation must be a function of these parameters, namely

φd(˜YN , ˜YT , χ) = g(˜YN , ˜YT )− χ− Y0 ≤ 0 for all 0 ≤ s ≤ L (36)



where g(˜YN , ˜YT ) is an homogeneous function and Y0 is the initial damage activation thresh-

old. Finally, under the generalized associativity hypothesis, the damage activation function

is also a potential function and the flow rules are of a generalized normality type

ω̇N =
∂φd

∂ ˜YN

λ̇d, ω̇T =
∂φd

∂ ˜YT

λ̇d, ξ̇ = −∂φd

∂χ
λ̇d, (37)

where λ̇d ≥ 0 is the damage activation multiplier. The interface damage constitutive rela-

tions are then completed by the usual loading/unloading conditions φd λ̇d = φ̇d λ̇d = 0
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