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ABSTRACT 

Current understanding of fracture behaviour of magneto-electroelastic solids is quite limited.   A solution 
scheme based on the fundamental solution for a generalized edge dislocation in an infinite magneto-
electroelastic solid is presented to analyze problems involving single and multiple cracks. The fundamental 
solution for a dislocation is obtained by extending the complex potential function formulation used in 
anisotropic elasticity. The solution for a continuously distributed dislocation is derived by using the solution 
for a single edge dislocation. The problem of a system of cracks subjected to remote loading is formulated in 
terms of set of singular integral equations by applying the principle of superposition and the solution for a 
continuously distributed dislocation. The singular integral equation system is solved by using the Chebyshev 
numerical integration technique. The M-integral for single crack and multi-cracks problems are derived and 
applied to the damage assessment problems in magneto-electroelastic solid. The influence of positive and 
negative electric and magnetic fields and crack orientation angle with respect to the poling direction are 
examined for both single and multiple cracks. The numerical results show that the M-integral presents a 
reliable and physically consistent measure for assessment of fracture behaviour of magneto-electroelastic 
materials.  

 
1 INTRODUCTION 

Magneto-electroelastic composites, such as the ferrite-ferroelectric composites, can be used to 
develop broadband sensors and actuating devices required for advanced engineering applications. 
These materials exhibit a complex and coupled magnetic-electric-mechanical field when subjected 
to external loading. Basic understanding of fracture behaviour of this class of materials is limited 
and is necessary before proceeding to study more complex issues such as magneto-electric fatigue 
and effects of temperature and moisture. Recently, Gao et al. [1], Song and Sih [2] examined the 
behaviour of a single crack and collinear cracks by using either the crack-tip Stress Intensity 
Factor (SIF) or the Strain Energy Density (SED) criterion. However, it is known that fatigue leads 
to the initiation of multiple arbitrarily distributed cracks rather than the appearance of a single 
crack or collinear cracks. In addition, the conventional crack-tip fracture parameters, such as the 
SIF and SED are known to have certain deficiencies when applied to assess situations involving 
randomly distributed clusters of cracks (Tian and Chen [3]). 
     Over the past forty years, many path-independent integrals have been proposed such as the J-
integral, the Jk vectors, the L-integral, and the M-integral (Budiansky and Rice [4]). It is found that 
in comparison to the crack-tip based fracture criteria such as the SIF and SED, the M-integral 
presents an excellent tool when applied to assess damage in brittle materials with arbitrarily 
distributed and strongly interacting clusters of micro-cracks (Tian and Chen [3], Chen[5]). Unlike 
in the case of elastic materials, fracture problems in piezoelectric and magneto-electroelastic 
materials involve some fundamental issues that are not yet resolved. For example, there is no 
consensus on the electric boundary conditions (permeable/conducting/ insulating/presence of free 
charges) of a crack in a piezoelectric material and the role of electric loading on crack propagation. 
In addition, different fracture criteria (e.g. total energy release rate, mechanical energy release rate, 
strain energy density criterion, etc) often predict different behaviour and crack propagation paths. 



Many of these issues applicable to piezoelectric solids are equally applicable to magneto-
electroelastic solids although both experimental and theoretical studies involving fracture of 
magneto-electroelastic materials are limited when compared to the studies dealing with 
piezoelectric materials. In this paper, the authors extend the M-integral to magneto-electroelastic 
materials and apply it to damage assessment problems in a magneto-electroelastic solid containing 
a single crack and clusters of cracks.   

 
2 SOLUTION FOR A CONTINUOUSLY DISTRIBUTED DISLOCATION 

Following Lekhnitskii’s complex potential function formulation for anisotropic elasticity 
(Lekhnitskii [6]), the general solutions for displacements 21,uu and 3u , electric potentialϕ , 
magnetic potentialφ , stresses 2221131211 ,,,, σσσσσ  and 23σ , electric displacements 1D and 2D , 
and magnetic inductions 1B and 2B of a magneto-electroelastic medium can be expressed as (Liu et 
al. [7]),  
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where{ } { }Τ= ϕφ ,,,, 321 uuuui , { } { }Τ= 1113,12111 ,,, BDi σσσσ , { } { }Τ= 2223,22212 ,,, BDi σσσσ ; 
),( 11 zf  ),( 22 zf  ),( 33 zf  ),( 44 zf  and )( 55 zf  are five holomorphic functions of 

argument, 21 xxz jj µ+= ; ( )' denotes differentiation with respect to zj ; A and L are two 
55× matrices that are functions of material properties (Liu et al. [7]). 
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Figure 1: Coordinate system for dislocation problem. 
 
     Assume that there exists a generalized edge dislocation at point )ˆ,ˆ( 21 xxP in an infinite magneto-
electroelastic plane, as shown in Figure 1. Following Miller [8], the complex potential functions 
corresponding to a single edge dislocation can be expressed as 
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where 210 ˆˆˆ xxz jj µ+= and jρ are complex constants. 
     Around a loop surrounding the point P, the stresses, electric displacements and magnetic 



induction are self-equilibrated, and the mechanical displacement, electric potential and magnetic 
potential jumps associated with the dislocation are denoted by the extended Burgers vector 
{ } { }Τ∆∆∆∆∆=∆ ϕφ ,,,, 321 uuuui . The complex constants jρ are determined by solving the following 
equations.  
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where 1X , 2X and 3X represent the net force in the x1, x2 and x3 directions around a loop 
surrounding the dislocation; 4X and 5X denote the net electric displacement and net magnetic 
induction on a loop surrounding the dislocation. For a standard dislocation, Xi(i=1,2,3,4,5) are 
identical to zero. 
    Following Gross [9] and Xu and Rajapakse [10], the dislocation solution given by equation (3) 
can be used to model an arbitrarily oriented single crack in a magneto-electroelastic medium. A 
continuously distributed dislocation is applied along the line Γ  with orientation angle β and 
length 2a (Fig. 1). A local coordinate ξ  is defined along the line Γ with its origin at the 

center ),( *
2

*
1 xxQ . Let the generalized Burgers vector of a distributed dislocation along Γ be 

denoted by { } { }Τ∆∆∆∆∆=∆ )(),(),(),(),()( 321 ξϕξφξξξξ uuuui . By integrating the solution for 
complex potential functions given by eqn (3) along Γ , the potential functions corresponding to a 
continuously distributed dislocation can be derived. Thereafter the coupled field in the medium 
can be obtained by using the equations (1) and (2). 

 
3 ANALYSIS OF MULTIPLE CRACKS 

Consider an infinite magneto-electro- 
elastic plane with N arbitrarily 
oriented cracks as shown in Figure 2. 
The length and orientation angle of 
the kth crack ),...,2,1( Nk = are 
denoted by ka2 and kβ  respectively. 
The loading system is characterized 
by remote stresses ∞

11σ , ∞
12σ and ∞

22σ , 
electric fields ∞

2E and ∞
1E , and 

magnetic fields ∞
2H and ∞

1H . The 
system of cracks shown in Figure 2 
can be modeled by treating each crack 
as a continuously distributed 
dislocation along the crack line. Using 
the solution for a distributed dislocation and the superposition principle, the multiple cracks 
interaction problem can be reduced to a set of singular integral equations. The system of singular 
integral equations can be numerically solved by expanding the dislocation densities in terms of 
Chebyshev polynomials and using the Chebyshev numerical integration scheme (Erdogan and 
Gupta [11]).  
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Figure 2: Geometry and loading of multi-crack system. 



 
 

4 M-INTEGRAL ANALYSIS 
The path-independent M-integral for a single crack in an elastic material was originally defined by 
Budiansky and Rice [4]. Later, Pak [12] showed that for a piezoelectric medium,  
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In the present paper, the M-integral for a magneto-electro elastic medium is obtained as,  
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where 2,1,,, =lpji ; C denotes a closed contour around the crack; ln  is the outward unit normal 
to C . 
    Consider the system shown in Figure 2. In order to evaluate the M-integral for a set of cracks, 
the closed contours C and kC are used. The contour C encloses all cracks, while the contour kC only 
encloses the kth crack. It can be shown that,  
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5 NUMERICAL EXAMPLES AND DISCUSSIONS 

In the numerical study, plane strain condition is assumed and BaTiO3-CoFe2O4 is used. The 
remote stress field is defined by, 26

221112 /1010,0,0 mN×=== ∞∞∞ σσσ . The material constants of 
BaTiO3-CoFe2O4 are given by Song and Sih [2]. 
 
Single crack case 
Figure 3 shows a single crack of half-length a 
and orientation angle β and the applied 
remote loading. Figure 4 shows the M-
integral for three different values of  β. It is 
clear that the M-integral is decreased by an 
applied electric or magnetic loading except in 
the case of a relatively low negative electric 
field ( 0E1012.0 2

5 <<×− ∞ V/m) or a very low 
positive magnetic field. Both positive and 
negative electric and magnetic fields 
therefore generally inhibit crack propagation.  
A horizontal crack shows higher M values 
when compared to inclined cracks. This 
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Figure 3: Geometry and loading of single crack. 



implies that the crack becomes more stable as angle β  increases. From a physical point of view, 
the limiting case of °= 90β  should be the most stable configuration under the applied loading 
system.  
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Figure 4: Variation of M-integral with applied electric field and magnetic field. 

 
Multiple cracks 
A case involving multiple cracks is 
considered to further demonstrate the merit of 
the M-integral for damage assessment. The 
system considered is shown in Figure 5 where 
an infinite plane containing four cracks of 
identical length 2a is subjected to a remote 
loading system. The four cracks are 
symmetrically placed to reduce the total 
number of geometric parameters governing 
the behaviour of the system. Numerical 
results are presented for the case r/a=1.5, 

045=θ  and β  is changed over the range o0  
to o180 .  The M-integral is shown in Figure 6. 
It is evident that the M-integral shows 
physically more realistic results with the 
minimum value of M corresponding to 

o90=β and the maximum values for o0=β  and o180 .  The dependence of M on electric field 
and magnetic is similar to that observed previously for single crack problems. On the other hand, it 
is found that the numerical results for the total energy and mechanical energy release rates do not 
capture the physical behaviour of the system.  
 

6 CONCLUSIONS 
It is shown that the continuously distributed dislocation method can be successfully applied to 
solve crack problems in magneto-electroelastic medium. The M-integral serves as a physically 
acceptable criterion for assessing damage caused by single and multiple cracks in magneto-
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Figure 5: Geometry of system with four cracks. 



electroelastic solid. It is found that both electric and magnetic fields generally inhibit the 
propagation of cracks in a magneto-electroelastic medium.  
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Figure 6: Variation of the M-integral with crack orientation angle β . 
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