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ABSTRACT 

We consider the defect size distributions at different stages of damage evolution, from the initial stage of 
defect nucleation and accumulation, through the intermediate stage of defect propagation and into the final 
stage leading to the appearance of the major crack. Critical events considered in this context are related to (a) 
the formation of microcracks exceeding the structural threshold associated with the grain size, and (b) the 
formation of a major crack that corresponds to the attainment of the maximum load. The significance of these 
two critical events is that they are often used to define the boundary between micro- and macro-mechanical 
analyses, and used in order to establish scale and size effects on material strength. 
 We consider the statistical distribution functions which are in widespread use for the description of 
cumulative defect size distributions, namely, the exponential, power law and the exponential-power law (also 
referred to as the Rosin-Rammler or Weibull) distributions. We note that the defect population statistics at 
different stages of evolution are best described by different statistical functions.  

We discuss of the relationship between defect size distributions and the statistics of material 
strength. We point out that Weibull strength statistics implies power law defect size distribution, and note the 
direct correspondence between the power law defect size distribution exponent and the Weibull modulus in 
the statistics of strength, giving the relationship between these parameters. 

We propose to use the transition between different distribution statistics as an indicator of the 
approach of a critical event. The effect of the structural size barrier associated with the grain size is to retard 
temporarily the crack growth beyond this critical size. This results in increasingly steep distribution curves, 
reflected in the increase of the Rosin-Rammler exponent parameter. Once crack growth proceeds beyond the 
structural barrier, a power law ‘tail’ of the crack size distribution appears. Microstructurally large defects 
evolve from the exponential towards power law cumulative size distributions. The appearance of the major 
crack is preceded by the decrease in the exponent of the power law ‘tail’. Observations confirming these 
conclusions have been reported in materials science and seismology.  

 
1  INTRODUCTION 

Statistical analyses of defects and particles are used in various branches of science, such as 
materials science, seismology, fragmentation, planetology, etc (Rosin and Rammler [1], 
Kolmogoroff [2], Golombek and Rapp [3], Botvina and Oparina [4]). Defect population statistics 
and its evolution under loading provide a useful tool for the characterisation of damage 
accumulation and material progression towards failure. Processes of defect nucleation and growth 
can be considered at various scales (Korsunsky et al [5]): void nucleation and growth at the 
nanometre scale; microcrack nucleation and propagation at the micrometre scale; multiple 
cracking of quasibrittle materials, such as concrete, at the millimetre scale; and rock fracturing in 
the vicinity of faults in the Earth crust at the scale between centimetres and kilometres. Size 
distributions are also of particular value in the analysis of dynamic fragmentation and in the study 
of asteroids. Despite the fact that the phenomena enumerated above span twelve decades of length 
scales, certain aspects of size distributions observed under these extremely different circumstances 
possess similar features and obey certain general rules. 



 A simple classification of the types of cumulative defect size distributions can be 
introduced. Denoting by 0N  the total number of defects and by )(cN the number of defects of 
size exceeding c, the simple exponential cumulative size distribution function can be written in 
the form (parameter a describes the steepness of the curve): 

)exp()( 0 acNcN −=     (1) 

The power law cumulative size distribution function has the form 
bccNcN )/()( 00= .    (2) 

Here 0N  now denotes the total number of defects exceeding c0. Finally, often the cumulative 
defect size distribution is best described by a combination of exponential and power law functions, 
often referred to as the Rosin-Rammler [1], or Weibull [2] distribution: 

])/(exp[)( 00
dccNcN −= .    (3) 

When random sized defect populations are considered, the cumulative size distribution is most 
commonly described by empirical Rosin-Rammler [1] or lognormal (Kolmogoroff [2]) functions. 
 A key question in the mechanics of material strength concerns the relationship between 
the defect population statistics and the statistics of strength.  
 

2 DEFECT SIZE DISTRIBUTIONS AND WEIBULL STATISTICS OF STRENGTH 
We establish the correspondence between power law statistics of the large defect ‘tail’ of the 
cumulative size distribution curve, and the Weibull statistics of macroscopic strength. 

The strength of a defect can then be described by a monotonically decreasing function of 
defect size. Griffith asserted that in brittle materials defect strength decreases proportionally to the 
root of defect size, 

2/1)( −= cK Ic πσ     (4) 

This is likely to hold qualitatively true in all materials: larger defects have lower strengths, with 
the relationship obeying a power law*: 

kcA /1/=σ ,   or  Ac k =σ .    (5) 

Given the cumulative defect size distribution is given by )(cN , the number of defects of size (c, 

c+dc) is given by dcdcdN )/(− . The same selection of defects possesses the strength (σ, σ+dσ) 

and can be written as σσ ddNd )/(− . Therefore   

/ ( / )(d / d )dN d dN dc cσ σ= .    (6) 

Weibull postulated that the form of the low strength (large size) defect strength distribution is 
power law (also sometimes referred to as algebraic), given by 

( )0 0( ) / mN Nσ σ σ −= .     (7) 

This implies that the large size tail of the defect size distribution is also algebraic, and of the form 
bccNcN −= )/()( 00 .     (8) 

Using equations (5), (6) and (7) together allow the relationship to be established between the 
Weibull modulus, m, to the power law exponent of the tail of the defect size distribution, b, and the 
strength scaling exponent, k. In order for the Weibull scaling of strength to be observed, the 



underlying defect size distribution must obey a power law. This stands in contradiction to the 
observation that defects of randomly distributed sizes most closely obey an exponential type 
distribution. This is likely to signify that during defect growth and interaction the size distribution 
evolves from exponential towards power law type. In order to validate this conclusion we develop 
and apply a simple defect population evolution model. 

 
2  FACTORS INFLUENCING DEFECT POPULATION KINETICS 

Evolution of defect population is controlled by the following factors: material structure and 
properties, loading conditions, and specimen geometry. These factors in turn determine the pre-
existing distribution of defect nuclei and the nucleation rate, and the defect growth rate, which is 
affected by the presence of structural barriers, the nature of defect interaction and coalescence 
(Botvina and Korsunsky [7]). 

The most commonly discussed example of a structural barrier to defect growth is the 
grain size of the material. It is well known that microstructurally short cracks exhibit ‘anomalous’ 
behaviour compared with long cracks. Namely, the growth rate of short cracks exhibits a minimum 
when the crack size approaches the size of the grain, giving rise to the fatigue crack growth 
threshold on the Paris’ kinetic diagram. A model aimed at describing the transition between the 
stages of short and long crack growth must account for this effect. 

The growth rate of long cracks may exhibit different dependence on the crack size, 
usually described by a power law. The exponent of this dependence under monotonic and cyclic 
loading conditions provides an indication of the brittleness (high exponent) versus ductility (low 
exponent) of the material response. Defect growth rate may also become strongly affected by 
defect interaction when the defect density becomes sufficiently large. The extreme manifestation 
of this interaction is the process of defect coalescence, which leads to the appearance of larger 
defects at the expense of smaller ones. 
 

3  MODELLING THE EVOLUTION OF DEFECT POPULATION  
In order to analyse the influence of the various factors discussed above we develop a simple model 
of defect growth from a fixed number of pre-existing nuclei, and their subsequent interaction. No 
account is taken of the process of defect nucleation during growth, nor do we consider defect 
coalescence. In developing the model we deliberately do not attempt to capture the fine details of 
defect growth and interaction, but rather aim to reveal the general nature of the dependence of the 
properties of the population evolution, such as the cumulative defect size distribution and the 
defect size spectrum, on the underlying mechanisms common to a wide variety of processes. 

The model assumes the number of defects to remain equal to the number of pre-existing 
flaws. The sizes of defect nuclei are chosen at randomly in the interval (0,1) and their location is 
prescribed at random within the two-dimensional unit box. The distance between defects is 
assumed to be given by the distance between their centres.  

At each step of the growth simulation the defect size is incremented by: 

)1(0 plCl ii ασ β +=∆ ,    (10) 

where li is the size of i-th defect, β is the exponent of the defect growth power law, p is the term 
reflecting the presence of defect interaction, and α is the scaling factor describing its intensity (no 
interaction when α=0). We assume that each defect interacts only with three of its nearest 
neighbours. For a given defect the presence of its neighbours is assumed to produce an increase in 
stress proportional to the remotely applied stress σ0 with the coefficient 
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where rn denotes the distance to one of the three nearest neighbours (n=1,2,3). This simple 
relationship is chosen on the basis of the linear elastic fracture mechanics expression for the stress 
field in the vicinity of a tensile crack. We use an array of 500 nuclei in the simulation, which was 
found to be sufficient to reveal the statistical information about the defect population.  
 

4  DEFECT POPULATION MODELLING AND STAGES OF DAMAGE ACCUMULATION 
The initial cumulative crack size distribution is best approximated by exponential-type functions 
(Rosin-Rammler or simple exponential).  
 Let us consider the effect of growth law on the population statistics by varying the defect 
growth exponent β in equation (11) within the range 0.5< β <1.5. Notionally low values of β (e.g. 
β=0.5) may correspond to slow defect growth, as perhaps in a ductile metal; intermediate value of 
β (β =1) may be thought to correspond to semi-brittle material response, while the higher values of  
β (β =1.5) are likely to be associated with the brittle state of material. 
 The case of β=0.5 (notionally ductile type of material behaviour) in the absence of defect 
interaction (α =0) leads to an exponential-type defect distribution, similar to the first curve in 
Fig.1a. However, during subsequent growth (not shown in the Figure) the distribution curve 
becomes progressively steeper, as smaller defects grow relatively faster than larger ones. This has 
a levelling effect on the defect sizes, and appears to reinforce uniformly distributed damage and to 
avoid localisation. Introducing even fairly weak defect interaction (α =0.1) leads to the evolution 
of the distribution away from the exponential-type and towards a distribution with a power law 
‘tail’ (Fig.1a). Fig.1b shows the defect size spectra corresponding respectively to the first and last 
curve in Fig.1a. It illustrates the phenomenon of multiple fracture taking place, with many defects 
growing at similar rates. However, it is possible to identify faster growing defects which are likely 
to correspond either to larger sized nuclei or to locations favouring strong interaction. In the long 
run these defects outgrow the rest and form the major crack. 

The case of β=1 (notionally semi-brittle type of material behaviour) without defect 
interaction (α =0) a stable exponential-type defect distribution (first curve in Fig. 1c) is 
permanently maintained, i.e. the defect distribution displays perfect self-similarity during growth. 
In the presence of defect interaction (α =0.05) the ‘tail’ of the distribution becomes less steep, and 
the entire distribution evolves towards the power law distribution (Fig.1c). The final spectrum of 
defect sizes is characterised by the presence of one or two large defects (Fig.1d). 

In the case of β=1.5 (brittle type of material behaviour) even in the absence of defect 
interaction (α =0) the distribution evolves towards the power law type (Fig.1e). The slope of this 
distribution for large defect sizes decreases, while that for small defect sizes increases. The 
spectrum of defect sizes (Fig.1f) shows a fairly uniform size distribution across the scale of defect 
sizes. Switching on interaction in this case rapidly leads to the appearance of a major crack. 

The general trend observed in all cases of defect population evolution is from exponential 
type distribution towards power law scaling of cumulative defect number with defect size. The 
exponent of the power law ‘tail’ corresponding to large size defects progressively decreases as 
defect growth proceeds. 

The analysis of cumulative defect size distribution curves allows the identification of two 
distinct regimes of damage accumulation. The first regime of distributed multiple damage is 
characterised by self-similarity of defect size spectrum and the stability of the exponential type 
cumulative distribution during defect growth. 
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Figure 1: Cumulative defect size distributions and size spectra during defect growth (see text).  



The second regime of localised damage accumulation corresponds to the appearance of 
power law segments on the cumulative size distribution curve, particularly in the region of the 
largest sized defects. This power law ‘tail’ of the defect size distribution is responsible for the 
frequently observed Weibull scaling of strength. Defect size spectra emerging after defect growth 
reveal the appearance of a few dominant defects that outgrow the rest. This phenomenon is 
connected with the transition from distributed to localised damage and fracture, and with the scale 
transition from micromechanical multiple short crack regime to the macromechanical regime of 
single major crack growth. 

During the transition from the first regime (distributed damage) to the second regime 
(localised damage) the self-similarity of defect size distribution curves and defect size spectrum is 
broken. As defect growth progresses the new defect distribution follows power law and also 
maintains self-similarity during subsequent damage accumulation. While in the first self-similar 
regime the distribution is exponential, in the second self-similar regime the distribution is power 
law. The approach of the critical event associated with the formation of a single dominant defect is 
characterised by the reduction in the power law exponent b.  
 

5  DISCUSSION 
We have discussed the relationship between strength scaling and defect size distributions, and 
considered the evolution of the latter during defect growth. We demonstrated using defect growth 
and interaction modelling that the approach to a critical event is characterised by the following 
phenomena: 

1. The self-similarity of the initial exponential defect size distribution is broken, and is 
replaced with power law distribution, particularly in the region of large defect sizes. 

2. The fast growth of larger defects leads to the reduction in the slope (power law exponenet) 
of the defect size distribution. This change in the distribution parameter (b) can serve as 
an indicator of the onset of damage localisation. 

3. The onset of localised damage is also reflected in the appearance of dominant defects in 
the defect size spectrum.  

The above observations suggest that these aspects of defect population evolution can be used as 
criteria for the identification of the transition from micromechanical to macromechanical damage 
regime, i.e. from microcracking to large crack propagation phenomena.  
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