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1 LaMCoS, Laboratoire de Mécanique des Contacts et des Solides
UMR 5514, INSA Lyon

Bat. Jean d’Alembert, 18,20 rue des Sciences 69621 Villeurbanne France

ABSTRACT

In the past few years, lots of techniques were developped for modeling dynamic crack growth. One
of the main difficulties is that the discretization of the problem is time dependent. This can produce
numerical instabilities, uncontrolled energy tranferts and high frequency oscillations in the solution
due to time discontinuities in the numerical model. This paper proposes, in the framework of the
eXtended Finite Element Method (X-FEM), a study of Time Discontinuous Galerkin Method (T-
DGM). Combining efficient tools like X-FEM and T-DGM , the obtained results are well accurate
and will allow to check efficiency for crack initiation, growth and arrest criteria.

1. INTRODUCTION
In the past few years, lots of techniques were developped for modeling dynamic crack growth
: EFG (see Krysl [1], Organ [2]), GEM (see Duarte [3]) and various PUM (see Remmers [4],
Belytschko [5]). One of the main difficulties is that the discretization of the problem is time
dependent. This can produce numerical instabilities, uncontrolled energy tranferts and high
frequency oscillations in the solution due to time discontinuities in the numerical model. Authors
have proposed an enrichment strategy for X-FEM ( Réthoré [6]) that allows stable numerical
simulation and energy preservation. The results they obtained let think that the limits of classical
Newmark time scheme are reached. It means that high frequency oscillations appears in the
solution because such time integrator are not well appropriate for time discontinuities. This paper
proposes, in the framework of the eXtended Finite Element Method (X-FEM), a study of Time
Discontinuous Galerkin Method (T-DGM) (see for e.g Michler [7] or Li [8]). We first describe the
space discretization of the model and then the time integration. The results are compared with those
obtained using a Newmark type scheme and seem promising.

2. SPACE DISCRETIZATION
In the method presented, we use the eXtended Finite Element Method first introduced in Black [9].
In this method, an enrichment is added to the classical finite element approximation using the PUM
developped in Babuska [10]. For static problem, the displacement field can be written with enriched
basis of shape functions :

U =
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∑
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where N is the set of all nodes in the mesh, Ncut the set of nodes which belong to elements
completely cut by the crack and Nbranch the set of nodes which belong to elements partially cut
by the crack. Ni are the classical shape functions, H is a discontinuous function which value is



1 if x is above the crack surface and -1 if x is bellow. [Bα] are branch functions ((r, θ) are local
cylindrical crack tip coordinates):
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In our approach, all fields (displacement, velocity and acceleration) are discretized with Equation (1).
Consequently, the discrete enriched problem can be written as a classical dynamic problem in the
scope of the Finite Element Method : we define the mass matrix and the stiffness matrix in the
usual manner. New space shape functions are added to simulate the crack growth. As shown by
Figure 1, new singular enrichment is added on the new set N n+1

branch. For discontinous enrichment,
new shape functions are only added on the set N new

cut = Nn+1
cut \ Nn

cut. This strategy is stable and
energy preserving (see Réthoré [6]) refering to theoretical studies of Newmark type schemes for time
dependent discretization (see Réthoré [11]).
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Figure 1. Strategy for enrichment when the crack propagates

3. TIME INTEGRATION
The formulation we choose is from Michler [7] and generalized for X-FEM space discretization.
As soon as the formulation is velocity-based, the velocity is interpolated using a piecewise-linear
approximation. Inside a time-slab In = [t+n ; t−n+1] we have :

V (t) = Vnλn(t) + Vn+1λn+1(t) (3)

where λi are linear functions. The kinematic relation U̇ = V and displacement continuity at tn are
strongly enforced. Velocity continuity at tn is weakly enforced and the variational statement for In

is written: find a linear function V such that for all linear test function δV we have:
∫

In

δV (t)
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t
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dt + δV (t+n )
(

V (t+n ) − V (t−n )
)

= 0

(4)
This formulation is quasi-equivalent to the classical P3-P1 presented in Li[8] : computed values
of velocity and displacement at the discrete instant are the same and the displacement continuity



is ensured. The difference concerns the displacement interpolation and the kinematic relation :
here the displacement approximation is P2 because the kinematic relation is strongly enforced,
P3-P1 approximation allowed high order approximation but the kinematic relation is only weakly
enforced.

4. EXAMPLE
The example we choose is the infinite plate with a semi-infinite crack because the theoretical
solution is known (see Freund [12]). Several authors have already treated this example so we
can also compare our results to their works. Under those assumptions (infinite plate with a semi-
infinite crack), for the geometry described Fig. (2), the analytical solution is only valid for time
t ≤ 3tc = 3H/cd when the reflected stress wave arrives on the crack tip. As the wave reaches the
crack, the mode I stress intensity factor can be written for a moving crack :

Kdyn
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Figure 2. Geometry and loading for the example of the infinite plate

The numerical results are compared with this theoretical one. We will be interested in the case where
the crack propagates at a prescribed constant speed v0 after time t = 1.5tc. The following numerical
results are obtained with H = 2m, L = 10m and l = 5m for plate dimensions and E = 210GPa,
ν = 0.3 and ρ = 8000kgm−3 for material properties. The tensile stress σ0 is 500MPa. v0 is
1500m.s−1 and stress intensity factors are normalized by σ0

√
H. Solutions are computed using a

40× 80 quadrangle elements with linear approximation.
Results are presented on Figure 3. As shown in Michler [7], the convergence of the T-DGM
formulation allowed us to use an approximately four time larger time step for the same accuracy.
Using a Newmark type scheme (average acceleration method, γ = 1

2
, β = 1

4
), the slope is well

captured but oscillations appear when the crack is growing. Such oscillations are not observed with
the T-DGM and the solution remains satisfying.

5. CONCLUSION
This paper presents a combination of X-FEM and T-DGM for dynamic crack propagation problem.
We propose an enrichment strategy for time dependent problems with X-FEM which is stable and
energy preserving (see Réthoré [6]). The time integration is treated with T-DGM using a velocity-
based formulation which ensures displacement continuity at the discrete instant. The results are
compared with Newmark time integrator which seems to reach its limits for such time discontinuous
problems. Combining efficient tools like X-FEM and T-DGM , the obtained results are accurate and
will allow to check efficiency for crack initiation, growth and arrest criteria.
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Figure 3. Numerical and analytical solutions K̄1 for a stationary then moving crack

1. P. Krysl and T. Belytschko. Dynamic propagation of arbitrary 3-d cracks. International
Journal for Numerical Methods in Engineering, 44(6):767–800, 1999.

2. D. Organ. Numerical Solutions to Dynamic Fracture Problems Using the Element-Free
Galerkin Methods. PhD thesis, Northwestern University, 1996.

3. Duarte CA, Hamzeh ON, Liska TJ, and Tworzydlo WW. A generalized finite element method
for the simulation of three-dimensional dynamic crack propagation. Computer Methods in
Applied Mechanics and Engineering, 190:2227–2262, 2001.

4. Remmers JJC, de Borst R, and Needleman A. A cohesive segments method for the simulation
of crack growth. Computational Mechanics, 31:69–77, 2003.

5. Belytschko T, Chen H, Jingxiao X, and Goangseup Z. Dynamic crack propagation based on
loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical
Methods in Engineering, 58:1873–1905, 2003.
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