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ABSTRACT 

The dynamic large-scale fragmentation resulting in a large impact or explosion is discussed. It is known that, 
unlike the lab-scale tests and independently on the type of explosion, energy and so on, the fragment size 
distribution presents maximums explained by block structure of the rocks and that this number grows with 
increasing the fragment size. A quantum-continuous model for this distribution in a rock cell under the long-
length primary wave action is proposed. Thus, the differential and cumulative distributions over the whole 
fragmentation volume are calculated, and the free-parameters in the model are fitted to the experimental data.  
 

INTRODUCTION 
Fragmentation of solids involves many natural and artificial processes, ranging from sky body 
collisions to comminution of coffee grains. Such phenomena play an important role in the 
formation of various structures (asteroid clouds, impact/explosion craters, etc.) and are 
distinguished by diversity, dependence on many factors and complexity of description. 
Fundamental investigations in this area began from lab-scale tests in statics [1-3] -see [4] - and 
later in dynamics [5,6]. Their findings serve as the basis firstly for empirical laws and then for 
theoretical predictions. Assuming the fractal law for the size distribution of particles, Carpinteri 
and Pugno [7,8] have unified the three comminution laws proposed by von Rittinger [1], Kick [2] 
and Bond [3] for predicting the energy consumption in fragmentation. A theoretical model [7] was 
followed by some experiments on drilling and compression of heterogeneous materials [8]. They 
also confirm the fractal nature of fragmentation and lead to the determination of the model 
parameters. In dynamics, the stone ball fracture resulting in impact by a projectile at 0.1-3 km/s 
shows that the distribution is subject to the same law, but it is described inserting two distinct 
fractal dimensions. The last peculiarity was later explained by a geometrical feature of the primary 
wave propagation inside the ball [9], where, based on the continuum damage theory of dynamic 
fragmentation developed by Grady and Kipp [10], the thorough computer-analytic simulation 
appears to be in a good agreement with the lab-scale impact experiments. Note that Carpinteri and 
Pugno [8] found the same result in perforations: the bi-fractality was explained as due to two 
different fracture mechanisms under the drilling tool, namely, cutting and crushing.  
         However, all these experiments were performed only at the micrometer fragment size range. 
Meantime, it was repeatedly noted that the scale effect is of great importance in fragmentation. As 
a matter of fact, the fragment size distribution observed after many large explosions (to kilotons 
energy) in rocks, does not follow the simple (mono) fractal law in the range 1-100 cm [11]. Unlike 
the small-scale tests, it has maximums explained by the block structure of rocks and moreover, the 
number of pieces surprisingly grows when the fragment size increases. These peculiarities only 
slightly depend on the type of explosion, its energy, and the depth of the charge laying.   

To describe all scales of dynamic fragmentations resulting in a large impact or explosion in 
this work, we suggest a quantum-continuous model of the local fragmentation distribution using 
the evidence on how the primary wave traveling through a cell of the rock spends its energy into 
fracture and heat, as recently emphasized by Simonov [12]. For the finer fragmentation (<5 mm), 
Melosh’s et al. description is adopted [9]. When changing to the block fracture with a hierarchy of 



characteristic sizes, the degenerate distribution function, that presents singularities, is inserted into 
the model. By integrating the local distributions, the global distribution over the whole destroyed 
volume is found out. Forcing the free model parameters to fit the empirical data [11] leads to 
remarkable agreement between theory and observations. Nevertheless, the restriction of the 
empirical data concerning quantity and accuracy, as well as the usual incorrectness of the similar 
reverse problems, leave behind them a great deal with concerning the possibility of refining the 
present simulation. 
 

PHYSICAL ASUMPTIONS 
Consider the fragmentation resulting in a large (sub)surface blast or collision of a massive 
projectile with a large-size brittle solid body simulated by an elastic half-space. Assume that the 
semi-spherical primary wave propagates starting at the distance , a conventional radius from 

the point of action, and with initial magnitude in mass velocity 
0R

skm69.30 =U , where the 
imaginary melting/solid boundary takes place according to reference [12]. Then, a description of 
the shock wave propagation for accounting the thermodynamics, in particular, its specific energy 
lost  - the energy spent to destroy a cell of ( )rf 3m1 - will be identical to as reported in [12]. So, 
the wave, emerged by a large action, propagates according to the well-known empirical law in 
dependence on dimensionless coordinate 0Rr R=  with the decay coefficients,  α    

(U , 1U>0 U> sm301 ≈U )  and  β  (U 1U< ) at stages of strong and weak shock wave, 

respectively (typically α =1.87 and β =1.6 for  rocks [13, 14]). The radius  and wave width, 0R
H , can be evaluated from the experimental data [13] and thus it follows that  and 

 for the 5 kilotons TNT explosion in granite, so that we choose 

m2.40 ≈R
m30H 20 −≈ 50 =RH  for 

the future calculations.   
In the domain of the fine fragmentation, we employ the differential distribution of particle 

sizes over a cell given in reference [9]: 
( ) ( ) max
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where  is the number of particles per 1  with sizes between l  and , is the 

peak size,  is the normalizing constant and m is a free parameter (
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role in fragmentation: they determine maximums in the numbers of pieces with respect to the size 
[11]. Thus, when < jlj ll  we advance  the following degenerate distribution : ( )r,lpc
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For us J=8 due to  mm are added as  the imaginary maximums, and  m  
are free parameters in the considered scale-range.  

,20007 =l 30008 =l j

To determine the pairs ( ), max1 , lA ( )32 , AA  and ( )min4 , lA
3

 as functions of r, we have the  

condition that the sum of individual volumes equals m1 , and the energy balance equation:  

     ∫
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3
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l ( ) ,1, =dlrlpc ( ) ∫=
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l

l

rf ( )lGK ( ), dlr ,lpc ( )lK klK −= 0   (3) 

where 2mJ20≈G
pc

( )lK

 is the fracture energy consumed for the free surface formation and  

are two constants;  is defined by the union of the distributions (1) and (2). Physically, the 

function  means the following. If 

kK ,0

( rl, )
30 =K , 2−=k , it indicates that all the lost specific 

energy  would be spent only for the fragmentation with formation of new free surfaces, 

, for each cube of material. Actually, one should take into consideration only a part of 

 due to the imperfect cohesion of blocks in rocks clearly recognizable [11] and, moreover, a 

part of the energy lost  is only expended directly in fragmentation or in fracture without 
disintegration (e.g., crack propagation without coalescence, etc.). Both these parts are not known 
even approximately, and we try to describe the ratio of these parts by the power function, where 

 are free parameters for future fitting. The boundaries of the regimes (2a-c), , are 

determined from (2a) and (3) or (2c) and (3) by substituting 

( )rf
26lSc =

cS

kK ,0

(rf )

nr

1max += jll  or l  

correspondingly. Meanwhile,  and  are obtained from the comprehensive analysis of the fine 

fragmentation (1) and (3), where now 

jl=min

1r 2r
( )lK =constant and 0min =l . Note the quantum-

continuous feature of the function ( )rl,pc  shows singularities as ; for example, 

 tends to the Dirac’s distribution function for 
13 −→ jn rr

(lpc , )r 3=jm . 

The differential distribution over the full fragmentation zone, ( )lp , is the integral over the 

volume of ( ) 0, ≠rlpc , evaluated between  and r , these being the roots of the integer-
algebraic equations followed from (2) and (3), i.e.: 
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To derive the relative number of fragments, ( )ii lN

∆

, (  contains among a set of ) for 

comparison with the nominal ones, , and corresponding to the averaged explosion over the 

eight events [11], we introduce the intervals of integration, , such that 
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The also are gently fitted, so that they become close to the half-length between l  and l . il∆ i 1+i

CALCULATION RESULTS 
The fitting process carried out by the trial-and-error method shows essential sensibility to the 
variation of the governing parameters, . This enable us to conclude the practical stability of 
the results obtained. 

kK ,0

As the first approximation, the well-fitting numbers  and iN il∆ , corresponding to the values 

, ,  for j=1,..,6, and 4.1=k 00165.00 =K 3=jm 1.07 8 == m
0
iN

m , are shown in Table 1 

(numbers without brackets). The sizes l  and the nominal data  are taken from [11]. However, 

the maximum distances  turn out to be of order 10  instead of 10  [12, 13]. This of course can 
relate to an asteroid with the very weakly connected blocks, but to change the result in order to 
approach the earth conditions, let us assume the following. Firstly, the great difference in the block 
volumes  and the fact that the empirical numbers of fragments  grow with increasing , 

lead to neglect very thin zones of the small-sized fragmentation ( l
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be highlighted with the help of a computer due to the well-known large-and-small numbers 
problem. 

To clarify the situation, suppose that fragmentation occurs only in two characteristic sizes, 
 and mm51 =l mm30002 =l , and just V  of volume is disintegrated into smaller 

particles. If the quality of the larger fragments is the same, the volume V  must be of 

3
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and occupies the sphere of radius ~400 m. Therefore this fact is due to a geometrical feature rather 
then to the model properties. Physically, the absence of the small particles, which only appear in 
the lab-scale experiments, can be explained by the large mutual displacements of the particles 
formed in the long-length wave under large compression. The great work of the friction forces 
transformed to heat is enough for the contact melting and then welding of these particles. 
Probably, the fine fragmentation observed in the natural experiments arises as a side action of the 
large-sized piece formation and their mutual collisions. By the way, in the small-sized fragment 
domain, the above mentioned maximums in the empirical distributions are slightly marked and 
sometimes disappear at all  [11]. To keep the whole percentage, we ascribe the true value of 

 for l  and calculate these numbers for the highest value of l  beginning with 

. Secondly, we replace the constant  by the function 

0
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 is in meters).  l
The numbers in the brackets in Table 1 represent the fitting corresponds to the values 

, , , 5.1=k 30000 =K 2.01 =K 4.02 =K , 5.0=jm
kKi ,
 and the realistic fragmentation radius 

. Note that the influence of the quantities  remains very sharp as compared to 

others. For example, the variation of U  does not change dramatically the distribution, 

influencing only the values of distances . 
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The cumulative number of fragments larger than a given size , l ( )lN , is determined by 

integration of the function  from  to . This cumulative distribution normalized by a 

value  is plotted in Figure 1, in the double-logarithmic coordinate system. One can 
notice that this curve differs remarkably from a straight line that corresponds to the common 
fractal law; at least two straight lines, corresponding to a bi-fractality would have to be considered 
as observed in [8,9]. In particular, the weakly expressed maximums corresponding to the 
characteristic values l  emerge. 
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( )%N  5.6 
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[ ]mml  200 300 500 700 1000 1400 2000 3000 
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( )%N  7.0 
(7.0) 

9.7 
(10.2) 

13.1 
(13.3) 

8.6 
(8.9) 

12.0 
(12.1) 

7.0 
(7.2) 

5.1 
(5.3) 

1.9 
(2.2) 

[mml∆ ]  30 
(33) 

108 
(96) 

51 
(81) 

158 
(154) 

92 
(188) 

225 
(317) 

67 
(208) 

67 
(633) 

 
Table 1 

Figure 1: The cumulative fragment size distribution.
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CONCLUSION 
In this work, the attention was focused on the rock fragmentation resulting in the long-length 
shock wave action, which, in turn, is the aftereffect of a large explosion/impact. Unlike the lab-
scale dynamic experiments [5,6] where only the fine fragmentation is evidenced, the block 
structure effect at the sizes dominates and, moreover, in such way that the larger 
fragment the greater its cumulative number [11]. The fragment size distribution assumed for a cell 
describes the fine crushing, when we employ the well-appropriate dynamic fragmentation model 
[9], or the block structure hierarchy disintegration. The latter is presented by a function with the 
quantum-continuous feature. Then the differential and cumulative distributions over the whole 
fragmentation volume are calculated. The free parameters of the model are determined by fitting 
with the empirical data [11]. To justify all physical conditions turns out to be the sophisticated 
task. Of course, in physics, many free parameters are not correct for any mathematical model, but, 
on the other hand, this reflects the complexity and uncertainty of the pattern of the fragmentation 
process. Thus, the analysis presented should be considered as one of the possible attempt on the 
way for a better understanding of the relation between the local and cumulative fragment size 
distributions at the large size scale. It appears that the multiscale dynamic fragmentation is a rather 
open question and there is much room for improvement of the fragment distribution statistic.  
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