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ABSTRACT 

Damage, for instance damage of concrete, results from microscopic motions. The basic idea we 
have developed is to account for the power of the microscopic motions in the power of the interior forces. 
Thus we modify the expression of the power of the interior forces and assume that it depends on the damage 
rate, which is clearly related to the microscopic motions. Furthermore we assume that it depends also on the 
gradient of the damage rate to account for microscopic interactions. The consequences of this assumption and 
a careful treatment of the fact that the damage quantity is a proportion (i.e., quantities with values between 0 
and 1) give the basic equations. 

The method being based on the separation between the descriptions of the macroscopic and 
microscopic motions, a natural question arises: what occurs when a macroscopic motion becomes 
microscopic? We answer this question by showing that the damaging effects of macroscopic vanishing 
motion remain whereas the macroscopic motion goes to zero. The effects of vanishing macroscopic motions 
are transferred from the macroscopic equation of motion to the microscopic equation of motion through the 
intervention of a damage source. 
 

1. INTRODUCTION 
Damage, for instance, damage of concrete, results from microscopic motions. The 
basic idea we have developed is to account for the power of the microscopic 
motions in the power of the interior forces (e.g. Frémond [4]). Thus we modify 
the expression of the power of the interior forces and assume that it depends on 
the damage rate, which is clearly related to the microscopic motions. Furthermore 
we assume that it depends also on the gradient of the damage rate to account for 
microscopic interactions. The consequences of this assumption and a careful 
treatment of the fact that the damage quantity is a proportion (i.e., quantities with 
values between 0 and 1) give the basic equations. For the sake of simplicity, we 
assume that the temperature is constant and all thermal effects are deleted. 
 

2. THE EQUATIONS OF MOTION 
Let us consider a solid, for instance, a piece of concrete and investigate its 
damage. Within the framework of continuum mechanics, we want to describe on 
the macroscopic level the effects of micro-fractures and micro-cavities, which 
result in the decrease of the material stiffness. Let the scalar ( , )x tβ  be the 
macroscopic damage quantity with value 1 when the material is undamaged and 
value 0 when completely damaged. 
The basic idea of the theory is to refine the power of the interior forces, as 
described in Frémond [4]. Within the solid, there exist microscopic motions, 



which produce damage, i.e., the micro-fractures or the micro-cavities. We think 
that the power of these microscopic motions must be taken into account in the 
power of the interior forces. Thus the power of the interior forces is chosen to 
depend on the strain rates  where U( )D U

r r
 is the macroscopic velocity, and also 

on /d dtβ  and ( /grad d dt)β . Those latter quantities are clearly related to the 
microscopic motions. The gradient of damage is introduced to take into account 
the influence of damage at a material point on damage of its neighbourhood. The 
actual power of the interior forces which takes into account the microscopic 
motions of domain  occupied by the solid is chosen as Ω

: ( ) ( )d dD U d B H grad d
dt dt
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where σ  is the stress tensor. Two new non-classical quantities appear, B , the 
interior energy of damage, and , the flux vector of energy of damage. The 
power of the exterior forces involves the power 

H
r

,dA d
dt
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where quantity  is a volume source of damage, which can be produced by 
chemical, electrical, or radiative actions, which break the links inside a material, 
concrete, for instance, without macroscopic deformations. Examples of sources of 
damage are given in Frémond [4]. The principle of virtual power for quasi-static 
evolutions gives two sets of equations of motion 
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where  is the outward unit normal vector to N
r

Ω . Equations (2) are new and non-
classical. They account for the effects of the microscopic motions. 
 

3. THE CONSTITUTIVE LAWS 
The value of the damage quantity β  is between 0 and 1 

0 1. (3),β≤ ≤  
is often thought of as the volume fraction of micro-voids or the quotient of the 
modulus of the damaged material divided by the modulus of the undamaged 
material. 
The internal constraint (3) on the damage quantity is a physical property. Thus, it 
must be taken into account by the functions, which describe the whole physical 
properties, i.e., either the free energy Ψ  or the dissipative forces, which can be 
defined by a pseudo-potential of dissipation Φ . The free energy is chosen 
because it describes properties related to the state, and because the dissipative 
forces describe properties related to the velocities. For the sake of simplicity, 



small perturbations are assumed, and ( )uε r  denotes small deformation where u  is 
the small displacement and choose the free energy 
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where I is the indicator function of the set [ ]0,1 , ( ( ) 0,I x =  if [ ]0,1x∈  and , if ( )I x = +∞

[ ]0,1x∉ ) which takes into account internal constraint (3). Thus the free energy has its 
physical value for any actual or physical value of β . The free energy is equal to +∞  for any 
value of β  which is physically impossible. Due to the expression of the actual power of the 
interior forces depending on the velocities /d dtβ  and ( / )grad d dtβ , it is natural to assume 
that the free energy depends on β  and gradβ . The generalised derivatives of the indicator 
function, ( )I β∂  the subdifferential set, contains the reaction to the internal constraint (3) 
which is zero for 0 1β< < , positive for 1β = , and negative for 0β = . The parameters λ  
and µ are the Lamé parameters. The first term of Ψ  is a quadratic function with respect to 
the strain tensor and a linear function with respect to the damage quantity. It gives the 
simplest model where damage is coupled with elasticity. The quantity  is the initial damage 
threshold expressed in terms of volumetric energy. It is equivalent to the initial threshold 
expressed in terms of damage force in the models issued from the classical theory (e.g. 
Lemaitre Chaboche [7], Lemaitre [8]). The parameter  measures the influence of a material 
point on its neighbourhood. 
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For the sake of simplicity, we assume that there is only dissipation with respect to /d dtβ  
Thus the pseudo-potential of dissipation depends only on /d dtβ  
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The quantity c  is the viscosity parameter of damage. The function I−  is the indicator function 
of the interval ]( ,0−∞ , (  if ( ) 0I x− = 0x ≤ , ( )I x− = +∞  if ). The effect of this indicator 
function is to require that 

0x >
/d dtβ  is negative: the broken microscopic links cannot mend by 

themselves for the material, which has been chosen. This is the case for concrete. This is not 
the case of some polymers, which have the property of recovering their strength once they 
have been damaged. The pseudo-potential of dissipation adapted to describe them must not 
involve the indicator function I− . The constitutive relationships are 
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The equations of evolution are obtained by using the previous constitutive laws and the  
Equations of motion (1) and (2). They are 
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where β∆  is the Laplacian of β . The function 0β  is the initial value of the damage, with 

0 1β =  when the structure is initially undamaged. 
Equations (5) are the equations of evolution of damage in domain Ω . The elements of ( )I β∂  
and ( )I d dtβ−∂  are reactions which force β  to remain between 0 and 1 and d dtβ  to be 
negative. In the first equation (5), the source of damage in the left-hand side is the external 
source  and a deformation energy. That agrees with the experimental observations. This 
model is sufficient to describe the damage phenomena during multi-axial loading and 
unloading without changing the sign of the exterior actions. Examples, applications and 
upgraded models can be found in Frémond [4], Frémond Nedjar [6], Nedjar [9]. 
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4. A MACROSCOPIC MOTION BECOMES MICROSCOPIC 

There are two equations of motion: the first equation (4) accounts for the macroscopic motion 
whereas the second equation (5) accounts for the microscopic motion. One can wonder what 
occurs when a macroscopic motion becomes microscopic. In order to answer this question let 
apply exterior actions to a structure in such a way that the amplitude of the resulting 
macroscopic motions become smaller and smaller. The macroscopic motions vanish and it is 
no longer possible to consider that they are macroscopic: one has to consider them as 
microscopic. One may wonder if their damaging effects also vanish. If they do not, how are 
they taken into account by the theory? Is there a transfer from the equation which describes 
the macroscopic motions towards the equation which describes the microscopic motions?  
 We are interested to consider the behaviour of the solutions τβ , uτ

r , to the initial and 
boundary values problem associated with eqs. (4), (5), in the case when a vanishing  sequence 
of external forces fτ

r
 is applied, i.e. 0fτ →

r
 as τ  tends to 0. The partial differential equations 

(4), (5) are difficult to solve, (e.g. Bonetti Schimperna [2]) although there are results in 
dimension one (e.g. Frémond Kuttler Shillor [3]). They may be modified by adding some non-
linear viscosity (e.g. Bonetti Frémond [1]). We can exploit an a priori estimates-passage to the 
limit procedure to perform the required asymptotic analysis. Thus, at a first step, we aim to 
find existence and uniqueness of solutions to the system for any fixed τ  and, on a second 
step, we prove properties on these solutions which allow us  to pass to the limit as τ  tends to 
0 (e.g. Bonetti Frémond [2]). 

Then, as one can prove that the displacement vanishes 
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namely there are not macroscopic displacements or deformations at the limit. The limit of the 
mechanical source of damage, ( ){ }22 : / 2trµε ε λ ε+  may be different from 0 
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Hence, let us discuss the mechanical meaning of . It is the weak limit of deformation 
energies associated to the vanishing sequence of macroscopic motions and, in general, . 
Thus, this function, representing a source of damage in (6), can be interpreted as the 
remaining damaging effect of macroscopic motions, acting at a microscopic level. It follows 
that a sequence of vanishing macroscopic motions can retain its damaging effect, at the limit, 
as a source of damage in the equation of microscopic motions. A closed form example in 
dimension one is given in Frémond [5]. In order to support this limit analysis, in the next 
section we briefly discuss the balance of the energy of the problem. 
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5. ENERGY PHENOMENA 

The work which is provided to the structure 
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is divided between damaging external work 
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external source of heat , and stored energy ( )Q t
2( ) ( ) ( ) ( ) . (7),S t D t d D t t dβ

Ω Ω
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In particular, when no instantaneous damage work is applied at the final time , from 
(7) it results  and, consequently, the work which has been provided is exactly the sum 
of the damaging work  and of the heat sources  resulting from the dissipative 
phenomena (e.g. Bonetti Frémond [1]). 
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