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ABSTRACT 
 
 

 The stress intensity factors KI and KII are developed analytically for the double cantilever beam specimen composed by the 
anisotropic material. These expressions are applied to orthotropic material in the case, where the material and specimen 
geometrical axes are not confused. Comparisons with the results obtained by the finite element method showed a good 
agreement. These analytical expressions of  KI and KII are validated numerically; they serve us to basis for studies on crack 
propagation in anisotropic material under mixed mode loading. 
     The majority of the study made before in the mixed mode criterions has concerned only orthotropic materials in the case 
where its material axes coincide with specimen geometrical axes. The objective of this work is to study the influence of 
material axes orientation on the crack bifurcation angleθ C .To carry out this work, strain energy density of Sih has been 
used; and an approximation of homogeneous linear elastic orthotropic material has been chosen.  

r r r
     The material and geometrical basis are defined by ( )r r rl r t, ,  and ( )r

i j k, , ; where l , 
rr and 

r
t are the orthotropical axes 

of material and where 
r
i , 

r
j  and 

r
k  are respectively the crack direction, the perpendicular direction to the crack plane and 

the parallel direction to the crack front. For simplicity reasons, one has envisaged only the cases where  the crack direction 
r
i  is always confused with one of the material axes 

r
l , 

rr  or 
r
t . In each case, we denote by ϕ L , ϕ R  and ϕ T the rotation 

angle around 
r r
l i≡ , 

r r
r i≡  and 

r r
t i≡  ( 0°≤ 90≤ °ϕ ϕ ϕL R T, , ). The angle of the load with the crack direction is denoted 

by β  ( β = °0 in mode II, 0 90°°p pβ in mixed mode, and β = °90 in mode I). the study of the modes (I, I+II and II) 
allows us to deduce the following conclusions : 
     For the mode I  : ( )β = °90
The crack bifurcation angle θ C = °0 for each crack length and angle orientation (ϕ L , ϕ R  or ϕ T ) tested. this is in 
agreement with  the theory (all fissure submit to the mode I propagates in its own plan). 
     For the mode II  :  ( )β = °0

In the case 
r r
l i≡ ; the critical angle θ C  is independant on the the orientation angle ϕ L  and the crack length. Its value is 

equal to + . In the cases °77 r r
r i≡ and 

r r
t ≡ i , the critical angle θ C  is independant on the crack legth.  But its value varies 

weackly  between and 84  when the orientation angles 79° ° ϕ R  or ϕ T cover [ ]0° °0 9, . 

     For the mixed mode ( )  :  0 9° °p pβ 0
In the 3 studied cases; for fixed orientation angle (ϕ L , ϕ R  or ϕ T ), the critical angle θ C  tends to decrease with increasing 

crack length. For fixed crack length; variations of the critical angle θ C  are weaks when ϕ L varies (case
r r
l ≡ i ). It’s not true 

on the 2 other cases, where θ C  varies strongly on the orientation angles ϕ R  and ϕ T (cases 
r r
r i≡ and 

r r
t i≡ ).  

 
 

              1. INTRODUCTION 
 
 
     For the majority of specimen fracture, the mode I and II  stress intensity factors are determined only by 
numerical method. In this paper, we propose theoretical expressions of and  for anisotropic material. 
These expressions are then applied to orthotropic material in the case where its material axes and specimen 
geometrical axes are not confused. 

KI KII

     Comparisons with the finite element method showed a good agreement. These analytical expressions of 
and  are validated numerically, then they serve us to basis for studies on crack propagation in anisotropic 

material under mixed mode loading. 
KI KII
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     Note that, the major part of studies made before in the mixed mode criterions has concerned only orthotropic 
material in the case where its material axes coincide with specimen geometrical axes. The objective of this work 
is to study, the influence of the material axes orientation on the crack bifurcation angle θ C . For this, criterion of 
Sih has been used. 
     To carry out this study, the choice has been made on a specimen commonly used in the fracture mechanics; 
it is about the double cantilever beam specimen ( D.C.B. ) (f. Lahna [1]) . Its geometrical axes 

r
i , 

r
j  and 

r
k   

define respectively the direction of the crack, the  perpendicular to the plan of the crack and the normal to the 
plan ( )r r

i j,  (Figure 1).  

     The tested material is supposed to be orthotropic; its symetrical material axes are the longitudinal, radial and 
transversal axes ( )r r rl r t, , . The behavior’s law is supposed homogeneous, elastic and linear. 

     In this study, we will suppose that a material axis 
r
l , rr or 

r
t  belongs to the geometrical plan of the crack 

( )r r
k i, . In this case, the  material basis ( )r r rl r t, ,  is deduced from the geometrical basis ( )r r r

i j k, ,  with the help of a 

rotation function of 2 angles θ  and ϕ  (Figure 1) (b. a. Jayne [2]). 
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Figure 1 : Defiinition of the geometrical and material basis 
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( ) ( )θ ϕ θ ϕ, ,= L L ,  or (  according to ( )θ ϕR R, )θ ϕT T,

r
l , rr  or 

r
t  belongs plan ( )r r

k i,  (Figure 1) 

The compliance tensors [  et ]S [    according to material and geometrical basis are given by the following 

matrix [3]. 
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     In this study, the analytical and numerical problems, that we tend to solve are supposed plans ( )r r

i j, . In this 

case, the compliance tensor is defined by : 
 

                                        [ ]                                                                                      (2) d
d d d
d d d
d d d

=
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 Where d Sij IJ=  in the plane stress; and d S
S S
Sij ij
i j= − 3 3

33

 in the plane strain.                                                 (3) 

 
 

2. THEORETICAL  FORMULATION 

 2



 
2.1 Analytical expressions of KI and KII 

 
     The stress intensity factors and  are developed analytically for the double cantilever beam specimen 
composed by the anisotropic material.These expressions are given by the following formulas(f. Lahna [4,5,6,7]) 
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Where the are the components of the compliance tensor.  is the applied load in mode I or in mode II, and d ij P b  
and  are respectively the thickness and half heigth of the specimen. h
µ1  and µ 2  are the roots of the equations : ( )d d d d d d11

4
16

3
12 66

2
26 222 2 2µ µ µ µ− + + − + 0=                         (5) 

Im are the imaginary parts of the complex d22
1 2

1 2

µ µ
µ µ
+







  and ( )d11 1 2µ µ+  

 
2.2 The criterion of Sih  
 
     The criterion for strain energy density factors proposed by Sih is as follows (g. c. Sih [8,9]) : 
     (i) The direction of crack propagation coincides with the direction θ C  of the minimum strain energy density 
around the crack tip should satisfy : 
       

                                               
∂
∂θ θ

S

C

= 0        and        
∂
∂θ θ

2

2
0

S

C

f                                                                  (6) 

     (ii) A crack extension starts in the θ C  direction when  reaches the critical value S , where S C
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and where , , , ,  and  are given by : A B C D E F
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d IJ , µ1  and µ 2 are defined above and ( )zk k= +cos sin /θ µ θ 1 2   ( )k = 1 2,  . 
 
 

3. RESULTS AND DISCUSSION 
 

 
     For simplicity reasons, one has envisaged only the cases where  the crack direction 

r
i  is always confused 

with one of the material axes 
r
l , rr  or 

r
t (
r r
l i≡ , r

r
r i≡  or 

r r
t i≡ ). In each case, we denote by ϕ L ,ϕ R and ϕ T the 

rotation angle around
r r
l i≡ , r

r
r i≡  and 

r r
t i≡  ( 0 90°≤ ≤ °ϕ ϕ ϕL R, , T ). The angle of the load with the crack 

direction is denoted by β  ( β = °0 in mode II, 0°p p 90°β in mixed mode, and β = °90 in mode I). the study of 
the modes (I, I+II and II) allows us to deduce the following results. Note that the critical angle θ C  is obtained by 

the minimum of the curve ( )θS ; except the case 
r r
l i≡ (in modes I and I+II), where the crack bifurcation angle is 

defined by the maximum of strain energy density (Figure 2). 
 
 
 
 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

-200 -150 -100 -50 0 50 100 150 200

TETA (degré)

S (daN/mm)

S=fTETA) en mode mixte

 
Figure 2 :  in mixed mode for the orthotropic wood maritime pine ( )S f= θ

 
 
 
 
 
 
 
3.1 Variation of  the critical angle θ C  in function of the crack legth   
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     For the three studied orientation cases (

r r
l i≡ , r

r
r i≡  or 

r r
t i≡ ).  we have fixed angles ϕ L , ϕ R  or ϕ T ; and 

we have varied the crack length. We note that the critical angleθ C  tends to decrease with increasing crack 
length.The figure 3 represents for maritime pine wood, variations of the critical angleθ C in function of the crack 

length in the case r
r

r i≡ . Note that in mode I, the crack bifurcation angle θ C = °0 for each crack length and angle 

orientation (ϕ L , ϕ R  or ϕ T ) tested. this is in agreement with  the theory (all fissure submit to the mode I propagates in its 
own plan). 
     In the mode II, for the case 

r r
l i≡ ; the critical angle θ C  is independant on the the orientation angle ϕ L  and the crack 

length. Its value is equal to +77° . For  the cases 
r r
r i≡ and 

r r
t i≡ , the critical angle θ C  is independant on the crack legth.  

But its value varies weackly  between and  when the orientation angles 79° 84° ϕ R  or ϕ T cover [ ] . 0 9, 0° °

 
 
3.2 Variation of  the critical angle θ C  in function of the orientation angle ϕ  

 
     In this case, we have fixed the crack length and we have varied the angle ϕ (ϕ L , ϕ R or ϕ T ). 
The figure 4 represents for the crack length a=120 mm (the behaviour of curves obtained with other crack 
lengths is the same); the variations of critical angle θ C in function of ϕ in mixed mode ( β = °10 ) . Theses curves 

show that variations of ( )θ ϕC L  when 
r r
l i=  are weak; It’s not true for the two other cases ( r

r
r i≡  or 

r r
t ≡ i ), 

where variations of θ C depend strongly on the angle ϕ (ϕ R  or ϕ T ). The results obtained for other modes are 
similar. 
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Figure 3 :  in the case ( )θ C f A=
r r
r i= , for the orthotropic wood maritime pine 
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Figure 4. : θ ϕ ϕ ϕC L Rf= ( , , T )  in mixed mode ( β = °10 ) for A mm= 120  

 
 
 

4. CONCLUSION 
 

 
     Analytical expressions of mode I and II stress intensity factors and are developed for specimen DCB 
composed by anisotropic material. These expressions are used for application of the strain energy density in the 
case where orthotropic axes are not confused with specimen geometrical axes. The study  shows us that, for 
imposed material axes orientation, 

KI KII

θ C decreases when crack length increases. For fixed crack length, values of 
θ C  depend strongly on the anisotropy introduced by the material axes orientation. 
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