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ABSTRACT

It is known that the application of fracture mechanics methods to rubbers generates some pecu-

liarities. The first part of this paper deals with the simulation of tear fatigue analyzer (TFA) tests

which are used to characterize crack propagation in rubber-like materials. With a combination

of a mesoscopic model of self-similar crack propagation and a flow enhanced standard solid with

nonlinear elastic and viscous elements it is possible to establish interconnections between mechanical

fracturing tests and intrinsic material properties on the assumption of small elongations. In the

second part we present a continuum mechanics approach based on the balance of the so-called

pseudomomentum as the pull back of the balance of linear momentum onto the material manifold.

Configurational forces appearing in this balance take into consideration anelastic behavior, thermal

gradients and inhomogeneities. In this way fracture parameters similar to the well-known J-Integral

can be established for rubber-like materials.

1 INTRODUCTION

Service life prediction of materials is clearly of high practical and scientific interest and has

attracted the attention of chemists, engineers, and physicists. In the case of rubber and

other polymer materials, it is reasonable to assume that microcracks from which failure

originates are formed via the sequence of several steps: i) Molecular chains attempt to move

in tensile direction, causing slip between chains and producing reorientation. ii) Cross-links,

entanglements and filler particles hinder the motion of chains. Chains acquire a state of

tension and local scission occurs. iii) Scission of one chain transfers stress to the neighbour-

ing chains, chain scission propagates to the surrounding molecules; the cumulative effect

produces a microvoid; iv) Microvoids that have grown to a critical size form microcracks

which continue to grow irreversibly. However, estimating the fatigue lifetime of elastomeric

components is still a difficult task for compound chemists and designers in rubber industry.

Therefore, it is essential to use fracture mechanics methods to characterize the toughness of

different elastomers under quasi-static and dynamic stress when predicting the life time of

highly stressed elastomer components.

With tear fatigue analyzer (TFA) tests the progress of the crack tip is first determined

over the period of a pre-cracked sample with fixed stress parameters. The materials toughness



can be characterized as the crack length changes per stress cycle da/dN via different stress

intensities for small deformation assumption, N being the number of cycles and a being the

crack length. It is important to understand, and to access at least on a semi-microscopic

level, the material behavior occuring directly within the tip of the crack - derived from

the macroscopic, in our case nonlinear viscoelastic, rubber material. With an analytical

semi-microscopic model, which combines the assumption of self-similar crack propagation

with a complex viscoelastic rubber model we present the basic principles and demonstrate

a comparison between modeling of dynamic crack propagation and TFA test for the simple

case of an unfilled synthetic rubber [1].

However as known, the application of linear elastic fracture mechanics (LEFM) methods

to rubber-like materials leads to several conceptual problems. So, we present a continuum

mechanics framework to characterize fracture in rubber-like materials. Due to dissipation in

the bulk so-called configurational forces appear in the local balance of pseudomomentum, the

pull back of the local balance of linear momentum onto the material manifold. Parameters

based on this balance equation can be used to characterize fracture accounting for dissipative

contributions.

2 DYNAMIC SELF-SIMILAR CRACK PROPAGATION

We assume that the singularity under cyclic Mode 1 conditions at the tip of the crack is

clearly defined and characterized by a stress intensity factor

KI(t) = Kmin +
∆K

2
(1 + sinωt) (1)

with

∆K = Kmax −Kmin. (2)

The cohesive stress σ ahead of the crack tip varies as

σ(t) = σc
KI(t)
KIc

, (3)

depending on the stress intensity factor KI , where σc is the critical cohesive stress and KIc

the critical stress intensity factor.

The variation ∆δ of the crack opening displacement (COD) δ during one cycle is pro-

portional to the deformation rate dε/dt integrated over one cycle τ [2]:

∆δ

δ
=

∫ τ

0

dε

dt
dt −→ ∆s

s
(4)

with s representing the length of the deformation and ∆s the crack zone propagation per

cycle. As the shape of the deformation zone does not change but becomes self-similar after



Figure 1: Model of self-similar crack pro-

pagation
Figure 2: Schematic diagram of the non-

linear mechanical model

each cycle we assume that the deformation zone continues to creep by ∆s during every cycle,

see figure 1. This value corresponds to the known crack length change per cycle da/dN . The

COD values can be calculated via the the stress intensity factors in the framework of LEFM.

We use a standard solid model expanded with a series dashpot [3], as shown in figure 2,

consisting of nonlinear elastic and viscous elements. The following model assumption were

made:

• Neo Hooke’s law is assumed in spring elements between the nominal tension and de-

formation according to the theory of rubber elasticity:

σ = G(λ− λ−2) = G Λ (5)

with G the initial shear modulus and Λ = λ− λ−2 a nonlinear elongation ratio.

• The temporal change of the elongation parameter Λ is simulated using a reaction

kinetics law for activated non-Newton viscose materials:

Λ̇ = A sinh
νσ

RT
(6)

where A is associated with an activation energy, ν is an activation volume, R the gas

constant and T the absolut temperature.

• For small elongations the simplified interconnection between strain ε = λ− 1 and the

elongation parameter Λ applies:

Λ = λ− λ−2 = 3ε + O(ε2) ≈ 3ε. (7)



Figure 3: Compairison between simulation and TFA results

In the case of filler loading the strain ε is replaced by a local intrinsic elongation εint. New

intrinsic material parameters νs, νt, As and At are introduced which can be estimated from

simple (non-destructing) stress-strain and creep experiments. The parameters τ−1
s = AsνsGt

and τ−1
t = AtνtGt represent characteristic times of the material. A simplified model with

τ−1
t = 0 yields an analytical solution for the interconnection between the crack growth rate

da/dN and the stress intensity factor KI in form of the Paris law. This can be utilized, for

example, to simulate very well the dynamic crack propagation in different highly cross-linked

polymer networks.

For elastomer materials far exceeding glass temperature with νsσ � 1, νtσ � 1 and

τ−1
t 6= 0 we obtain the result shown in figure 3 for an unfilled rubber consisting of styrene

butadien copolymer SBR 1500 and cross-linked with 1.2 phr (parts of weight per hundred

parts of polymer) of sulfur and 1.2 phr N-cyclohexylbenzothiazole-2-sulfenamide (CBS) ac-

celerator.

3 CONTINUUM MECHANICS APPROACH

Because large deformations violate the small deformation assumption and material behavior

of rubber is non-linear with dissipative contributions LEFM methods are not suitable for

crack propagation in such materials. Hence we present in the second part a general continuum

mechanics framework for static and dynamic simulation of crack propagation in rubber-like

materials.

The tearing energy [4], defined by

T = −dU

dA
, (8)



as a extension of Griffith’s theory is widely used to characterize fracture in such materials.

The decrease of the stored elastic energy dU is balanced by the energy to form new surface

areas dA and the energy dissipated in the process zone ahead of the crack tip. But in

rubber-like materials energy dissipation in the bulk due to material behavior is present, too.

Note that eqn (8) is formally identical with the definition of the energy release rate in the

irreversible progress of the crack tip.

The material behavior of rubber is described in the framework of thermodynamics with

internal variables [6] that account for microscopic phenomena responsible for macroscopic

dissipation at finite strains. We asuume that the thermodynamic potential

W = W (F, θ, α;X) (9)

depends on the deformation gradient F , the absolute temperature θ and internal variables

α and is an explicite function of the material particle X in the case of an inhomogeneous

material.

In addition to the known balance equations of continuum mechanics the pull back of

the local balance of physical momentum onto the material manifold [7] results in the local

balance of pseudomomentum

dP

dt
− divR b = f inh + fθ + fα (10)

at all regular material points with the pseudomomentum P accounting for dynamic contri-

butions, the material divergence divR of the Eshelby material stress

b = −(LIR + T · F ) (11)

and the configurational forces f inh, fθ and fα capturing true material inhomogeneities and

dissipation due to thermal gradients and anelastic material behavior. In eqn (11) L is the

effective ”Lagrangian” density, IR the unit dyadic on the material manifold and T the first

Piola-Kirchhoff stress.

In inhomogeneous materials accounting for thermal and anelastic behavior and dynamic

contributions the crack tip can be characterized using a global quantity based on eqn (10),

for example an integral over a material region surrounding the tip. Note that the well-known

J-Integral [5] can be deduced as special case in LEFM.

4 CONCLUSIONS AND FINAL REMARKS

We have shown that the dynamic crack propagation in rubbers can be modeled via the

combination of three physical concepts: i) self-similar crack propagation, ii) stress intensity

factor (crack tip opening displacement), and iii) Eyring-like flow-enhanced neo-Hookean



standard solid as a representative of the rubber solid. The effect of viscous flow on the creep

stretch will not occur in the second creep stage if one removes the dashpot connected in se-

ries with the spring. Then, the (linear standard solid) model describes only the viscoelastic

behavior of a non-damaged rubber sample. Intrinsic viscous material parameters are related

to activation volumes and activation energies, respectively, at the crack tip material which

is described with the generalized standard solid model. A reasonable interpretation follows

from the inverse parameters ν−1
s,t and A−1

s,t having the meaning of intrinsic moduli and times,

respectively. The combinations τ−1
s = AsνsGt and τ−1

t = AtνtGt define two characteris-

tic relaxation times of the rubber material. They allow interpretations concerning critical

frequencies of dynamic loads. Note that this approach is restricted to Mode I crack propaga-

tion and small deformations. The neo-Hooke’s law leads to further restriction to amorphous

rubbers and excludes strain-crystallizing materials.

To avoid these restrictions we presented a continuum mechanics approach that is related

to the notion of configurational forces. The description of local dissipation due to inelastic

material behavior with internal variables leads to dissipative contributions in the balance

equation of pseudomomentum apart from those due to true material inhomogeneities. Global

quantities can be defined accounting for these contibutions to characterize fracture in rubber-

like materials.
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