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ABSTRACT 

We consider a mechanism of macroscopic crack growth and failure in cement and rock in compression based 
on three dimensional patterns of stress non-uniformity associated with generation of multitudes of wing 
cracks. In 3D each wing crack has a limiting ability to grow and hence cannot produce sample failure on its 
own. Neither the crack coalescence can form 3D patterns that can evolve into a macroscopic crack. Instead 
opening and shearing of the wing cracks produce additional stress disturbance. The combined effect of the 
stress disturbances from all wing cracks results in a non-uniform stress field spatially varying in a random 
fashion. The main feature of such a field is that any plane running through the sample can potentially have 
parts subjected to tensile stress alongside with the parts under compression (the average stress equal to the 
applied external load acting on this plane). As the load increases, these stress variations become stronger and, 
eventually, produce a macroscopic tensile crack at the place the tension was maximal. Further growth of the 
macrocrack proceeds by initiating new segments, offset from the main crack plane in order to avoid the 
places under compression. This en-echelon type fracture is formed through a specific mechanism of tensile 
crack growth rather than coalescence. The macroscopic crack is inclined to the direction of axial compression 
at the angle maximising the average magnitude of the tensile parts of the stress field. This angle depend upon 
the ratio between total normal opening (dilatancy) and shear of the wing cracks, which in its own term 
depends upon the material microstructure and the confining pressure. When this ratio is above a certain 
threshold, the macrocrack will be parallel to the direction of axial compression producing splitting. When the 
ratio is below the threshold, the macrocrack will be inclined and look like shear fracture.  
 

1. INTRODUCTION 
Failure of heterogeneous materials such as cementicious materials, rocks and ice in compression is 
characterised by two major modes (see Germanovich [1] and the literature cited there): (1) 
splitting or columnar failure, predominantly observed in uniaxial compression; (2) shear or oblique 
failure observed in triaxial compression and, often in uniaxial compression. In the latter case the 
sample is broken by what appears as shear cracks. 
 The most popular approach to describe shear failure is to use the Mohr-Coulomb theory or its 
various modifications, which adequately represent experimental data related to the oblique failure. 
In this theory, as well known, the direction of the future fracture is determined as the one at which 
the shear stress reaches the friction stress at the least load magnitude the latter being referred to as 
the compressive strength. The drawbacks of this theory are also well known. Firstly, it has a 
contradiction in itself since it is based on friction properties of a not yet existing interface. This 
immediately turns the Mohr-Coulomb criterion into an empirical one in which the friction 
parameters are treated as internal material parameters to be back calculated from the results of 
compressive tests. Subsequently, the application of the criterion becomes limited to the cases 
allowing direct testing, which often excludes in-situ characterisation since direct transfer of 
laboratory data to large-scale situations is precluded by the scale effect. The second drawback is 
the inability of the Mohr-Coulomb theory to explain the splitting. In view of these drawbacks a 



considerable effort was devoted to developing micromechanical models of failure. 
 The majority of models developed to explain splitting are based on the concept of wing crack 
– the crack generated by a local stress concentrator (a pre-existing share crack or pore or a certain 
type of grain contact) assuming that the wing crack can grow extensively at least under uniaxial 
compression as observed in 2D experiments (e.g., Brace [2], Horii [3]). The failure is attributed 
either to the growth of one of the wing cracks throughout the whole sample or to unstable crack 
growth caused by interaction (e.g., Ashby [4], Germanovich [5], Kemeny [6]). These 2D models 
fail however to recognise that the real three dimensional wing cracks have an intrinsic limitation to 
the growth preventing the wing elongation beyond the size of the initial sear crack even in the 
most favourable case of uniaxial compression. 
 Modelling of shear failure in compression, taking into account that the shear cracks do not 
propagate in their own plane, but rather kink, is based on considering various mechanisms of crack 
coalescence (e.g., Wittmann [7], Stavrogin [8]) or en-echelon formation (e.g., Horii [3], Schulson 
[9], Reches [10]). The main issue the en-echelon models face is the identification of the 
mechanism which would force all the cracks forming en-echelon to be oriented in the same 
direction. If this happened by chance, then even for a 2D model when each crack has a choice of 
only two orientations with probability of ½, the probability to find n cracks equally oriented in 
desired locations is 21-n. Suppose the cracks are 1 mm in length. Then, in order to produce a 
section of a sample of 5 cm long one needs 50 cracks in en-echelon. The probability to find such 
an arrangement, 2-49≈10-15, is negligible. In 3D the probability reduces further, since the cracks 
forming en-echelon must be more or less coplanar and also more cracks is needed (in the above 
example 2500 cracks will be needed to form a macrocrack of 5x5 cm). Hence, the cracks forming 
en-echelon were not there initially, but rather were formed in the process of macrocrack 
propagation.  
 Direct finite element simulations of failure in heterogeneous materials are based on 
specifying failure criteria for each element (e.g., Zou [11]) which are essentially the same as 
observed in macroscopic samples. Therefore, the question of the failure criterion is simply shifted 
from macroscopic to microscopic scale without actually producing the relevant failure mechanism. 
Models treating the shear cracks as planes of strain localisation (e.g., Rudnicki [12]) suffer from 
the same problem: the material behaviour at the micro level should resemble the macroscopic 
behaviour the model is set to explain.  
 Dyskin [13] noticed that the wing cracks, create considerable stress non-uniformity (spatial 
stress fluctuations) with some places of the materials subjected to tensile stresses and therefore 
capable of generating tensile cracks. Based on this idea a 3D model of splitting crack formation 
and propagation was proposed. In this paper we extent this idea to model the formation and 
propagation of inclined tensile cracks which produce oblique (shear-like) failure. 
 

2. MECHANISM OF CRACK PROPAGATION IN NON-UNIFORM STRESS FIELDS 
The stress field generated by wing cracks and other heterogeneities is non-uniform and random 
owing to their random locations, orientations, shapes and dimensions. In the parts of the sample 
where the stress variations become tensile new cracks can be generated and grown to macrocracks 
[13]. Figure 1a, b explains a possible mechanism of tensile macrocrack formation and propagation. 
Figure 1a shows a possible realisation of random field of a normal stress component σ33; the stress 
increasing from dark to white, such that the dark areas correspond to compression, while the white 
areas correspond to tension. For the illustration purpose, only a section parallel to the (x2, x3) plane 
is shown. Obviously, the first crack (crack 1) is generated at the area with the maximum tensile 
stress. This crack will propagate until it is arrested in the areas subjected to compression. As the 



applied load increases, so does the amplitude of the stress variations. Further propagation of crack 
1 will however be prevented by similarly increased compression; instead it will generate a new 
crack (crack 2) at the place where the original stress distribution showed no compression. This will 
result is a discontinuous offset-type trajectory of crack growth, which in the real 3D case will look 
like the one shown in Figure 1b. Essentially, the crack segments will be situated at places where no 
compressive stresses acted. On average, the magnitude of these stresses is equal to the 
mathematical expectation of positive (tensile) values 
 ( ) σσσσ df )(0,max∫=+
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where σ denotes the relevant stress component, f(σ) is the probability density function. 
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Figure 1: Macroscopic crack formation and growth under spatially random stress field: (a) a 
realisation of the random stress field σ33; the maximum compression is shown in black, the tension 
- in white. The first crack segment (crack 1) appears at the place of maximum tension. Crack 2 is 
then generated at the place where the compressive stress is minimal, then other segments (cracks 3 
and 4) are generated; (b) a 3D structure of the macrocrack; (c) a model of the macrocrack. 
 
 We will model such a complex macroscopic crack, in a very approximate manner, as a planar 
crack subjected to load σ+, Figure 1c. Assuming further that the crack is disk-like of a radius R and 
using conventional criterion of crack propagation KI=KIc, where KIc is the fracture toughness of the 
material, KI=2σ+(R/π), one notices unstable macrocrack propagation. 
 Suppose the random stress is Gaussian with the uniform mathematical expectation, σav and 
standard deviation, Σ. Then 
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3. STATISTICAL PROPRTIES OF NON-UNIFORM STRESS FIELD CREATED BY A 
MULTITUDE OF WING CRACKS  

In order to quantify the mechanism by which this field produces and drives macrocracks we need 
to determine the mathematical expectation and variance of this field.  
 Suppose that the sample is such loaded that in a similar homogeneous sample a uniform 
stress field σik

0 would be produced. In the case of compression of magnitude p in x3 direction (see 



the co-ordinate frame on Figure 2) and confining pressure of magnitude q in the normal directions  
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 The actual stress field σik is different predominantly owing to the effect of wing cracks with 
some contribution from other heterogeneities. Nevertheless its volumetric average over the whole 
sample, <σik>, can be shown to be equal to σik

0. Assume ergodicity the mathematical expectation 
of this stress field can be found 
 0
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 In order to estimate the variance of the stress field generated by the wing cracks each crack is 
modelled by a dislocation loop, Figure 2, with the shear component of the Burgers vector, bt, 
directed parallel to the axial load and the normal component, bn, directed perpendicular to the axial 
load. The shear component reflects the contribution of the wing crack to the non-linear part of 
axial strain, while the normal component reflects the wing crack contribution to dilatancy. As 
further simplification, we replace the dislocation loops with point defects, by limiting transition of 
the loop area, A, to zero keeping the corresponding volumes, Ut=btA, Un=bnA, constant.  
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Figure 2: Wing crack evolved form an initial inclined shear crack (left) and its model as a 

dislocation loop (right) with Burgers vector (bt,bn). 

 We represent, following Landau [14], the dislocation through body forces 
fi=1/2λiklm((nlbm+nmbl)δ(ζ)),k, where nm and bm are the components of unit normal vector to the loop 
and the Burgers vector respectively, δ(ζ) is the delta-function of coordinate ζ along the normal 
vector, (,k) denotes differentiation with respect to xk and summation is presumed over repeated 
indexes. Then using the divergence theorem the volumetric average of the stress field generated by 
these point defects can be expressed as follows 
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where σik
0 is the applied load, E, ν are the Young’s modulus and Poisson’s ratio of the material 

(the material is assumed isotropic), V is the sample volume, M is the number of wing cracks in the 
sample (this number grows with load), the superscript µ refers to a particular wing crack. It is 
important to distinguish between this stress field which essentially represents the stresses 
generated at a distance from the wing cracks (since this approximation relates to the scale from 
which the wing cracks are seen as point defects) with the full stress field (that includes stresses in 
immediate neighbourhoods of the wing cracks) which volumetric average is given by equation (4).  



 Direct computations of the correlation function for the stress fields in the point defect 
approximation [13] suggested that the correlation length is of the order of the wing crack size. 
Based on this observation, we break the sample volume V into M parts Vλ, λ=1,..,M such that the 
averages over Vλ,  <σik>λ are approximately independent from each other. Then from the 
ergodicity, the variance Var(<σik>λ) can be expressed through the variance of the full volumetric 
average, Var(<σik>). We assume that the latter is adequately represented by the variance of (5). For 
wing cracks uniformly oriented in the (x1, x2) plane, assuming that the average values of shear 
‘volume’ Ut and volume of opening of wing cracks Un are independent, one has 
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where N is the number of wing cracks per unit volume, κ has the meaning of the ratio between 
dilatancy and inelastic part of the axial strain. 
 

4. A MECHANISM OF SPLITTING AND OBLIQUE FAILURE IN COMPRESSION 
Consider a plane inclined at an angle ψ to the x3 axis and determine the average tensile stress σ+ 
acting on that plane. Substituting (3), (6) into (2) one has  
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 Figure 3 shows stress (7) for t=p and for different q and κ. It is seen that for κ=1 stress σ+ 
reaches maximum at ψ=0, which corresponds to splitting. Small values of κ lead to oblique failure. 
Since for q>0 mainly oblique failure is observed, κ should be small as compared to tan(ψ).Then 
taking into account that t~p-q an expression similar to Coulomb-Mohr criterion can be obtained. 
If, in addition, t>>p its parameters will become independent of the loads p and q. 
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Figure 3: Dependence of average tensile stress acting on a plane vs. the angle of its inclination. 
 
 For uniaxial compression the critical value of κ has the form 
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5. CONCLUSIONS 

It is demonstrated that the random stress non-uniformity created by the multitude of wing cracks is 
sufficient to induce tensile cracks and then make them grow unstably as a macroscopic en-echelon 
tensile fracture. This macroscopic fracture is inclined to the direction of axial compression at the 
angle maximising the average magnitude of the tensile parts of the stress field. This angle depends 
upon the ratio between total normal opening (dilatancy) and shear of the wing cracks. When this 
ratio is above a certain threshold, the macrocrack will be parallel to the direction of axial 
compression producing splitting. When the ratio is below the threshold, the macrocrack will be 
inclined and look like shear fracture. 
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