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ABSTRACT
We study the fracture roughness for a two-dimensional central force model by nu-
merical simulations to check the conjecture that the fracture roughness is due to the
fracture process being a stress-weighted percolation process. The simulations are done
on a triangular lattice and the fracture process is quasi-static. The simulations are
done in mode I and the elastic equilibrium equations are solved with the iterative con-
jugated gradient method. The material has non-uniform material properties through
disorder in the breaking thresholds for the bonds on the lattice. We find that for small
disorders in the breaking thresholds the fracture is localised and the fracture roughness
is found to be ¢ = 0.70 4+ 0.05. We also measure the percolation correlation length
exponent for large disorders and find v = 1.43 £ 0.10, which suggests that the value
of ¢ is in the upper part of the interval. The result for v also excludes generic rigid-
ity percolation as the universality class of the stress weighted percolation process in
this model. In the infinite disorder limit the gradient imposed on the damage distribu-
tion by the fracture process makes this model different from ordinary rigid percolation.

1 INTRODUCTION

The studies of the fractal properties of fracture surfaces started in the mid-
eighties when Mandelbrot et al studied fracture surfaces in steel. Mandelbrot[1]
In the early- and mid-nineties the evidence of an universal self affine scaling was
established. Parallel to the experimental studies researchers started to study
these scaling relations both numerically and theoretically.

Self affinity can be described as a anisotropic scaling of a quantity. If we
scale the system in one direction with one scaling factor we must scale with
another scaling factor in another direction. For fracture surfaces this self affine
scaling manifests itself through the probability of the surface passing at height
y at position z when it was at height 0 when x = 0.

Aem(Aa, Ay) = (2, y), (1)

where ( is the self affine scaling exponent or fracture roughness. ¢ = 0.5 implies
a non-correlated surfaces, ¢ > 0.5 implies persistence and ¢ < 0.5 implies anti-
persistence.

The universality of the self affine scaling exponent implies that it is material
independent. This universality suggests that the the fracture roughness is due
to the fracture process and not the material properties of fractured material.
To determine which physical process that governs the shaping of the fracture
surface and to be able to model this process is an important question in the
studies of the morphology of fracture surfaces.

For three-dimensional materials a fracture roughness ¢ = 0.8 has been mea-
sured for large length scales, um to mm. Daugier[2] For smaller length scales,
< pm, a fracture roughness ¢ = 0.5 has been observed. Daugier[2]. For two-
dimensional materials ( = 0.7 has been measured for large length scales. En-
goyl3].

We can measure this fracture roughness by considering the scaling of the



average fracture width. The average fracture width is defined as
w=(<y>2—<y>HY2x LS, (2)

where y is the direction perpendicular to the fracture and the averages are taken
over the length of the samples parallel to the fracture

A conjecture made by Hansen and Schmittbuhl connects the fracture roughness
to the critical exponent for the correlation length of a stress weighted percolation

process, v. Schmittbuhl[4]
2v
p— 3
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Using the equation above we can calculate an expected value for ( if v is known
and vice versa.

We can measure v when the disorder is so large that the correlation length is
larger then the lattice size. Finite size scaling then gives the following expression
for the fluctuations in the density of broken bonds

U(peff) = (< pgff > — < (peff >2)1/2  L~V¥ (@)

We model the elastic forces in our simulations with the central force model.
The expression for the force on a bond connecting the nodes ¢ and j in the
lattice is shown in eqn (5)

fij = oij{(r; —ri) -ny;} - ny;. (5)

Where 0;; is the spring constant for the bond, 7, is the displacement of the kth
node, and n;; is the unit vector parallel with the bond.

The central force model only transmits forces parallel to the axis of a bond
and does not transmit angular forces. Since this model is vectorial a first guess
for the percolation process is rigidity percolation. Using the value for v found
by Moukarzel and Duxbury Duxbury[5], ¥ = 1.16 in eqn (3) gives us ¢ = 0.70.

2 NUMERICAL SIMULATTONS

The numerical simulations were done on a triangular lattice with rigid cross-
bars at the upper and lower boundary and dimension L x L. The network was
periodic perpendicular to the crossbars. The spring constants were all set to
unity and then a random noise was added to the spring constants to ensure
generic rigidity. To model the heterogeneity of the material each bond in the
model was also assigned a different threshold value drawn from an uncorrelated
distribution, t; = rlp , where D is a disorder parameter describing the disorder
in the system. The limit D = 0 equals no disorder, and the limit D = oo equals
infinite disorder.

The fracture process was considered quasi-static which implies that we let
the time scale of force relaxation after a bond has been broken be much smaller
than the time between succeeding bond failures. The algorithm for the fracture

process is as follows:
e Solve the equilibrium equations for the lattice

e Find the largest ration f;/t;



e Remove the bond with the largest ratio
e Repeat until elasticity module is zero

The equilibrium equations are solved iteratively by the conjugated gradient
method. When the sample is broken we identify the lower fracture surface and
calculates the average width of this surface.

3 RESULTS
The results for the fracture roughness are for uniaxial tension and a threshold
disorder of 0.7. We used 10000 realisations for the 10 x 10 lattices and 90
realisations for the 180 x 180 lattices.
With a finite disorder we found that the average fracture width scaled well
with a fracture roughness equal around 0.7, see figure 1. The localisation of the
fracture is seen in figure 2.
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Figure 1: Scaling of the average fracture width for lattices up to 180 x 180. the
solid line is for ¢ = 0.74.

A measurement of v showed good agreement with the values around v = 1.4
for a disorder of D = 20, see figure 3. At this disorder there is no localisation of
the fracture. These measurement had 30000 realisations for the 10 x 10 lattices
and 400 for the 70 x 70 lattices.

4 CONCLUSION
For a finite disorder the fracture is localised and we have measured { =
0.70 + 0.05. This result is close to earlier experimental values for {, and also
close to the predicted value by eqn (3). Our result for v suggests however that
the correlation length exponent associated with this fracture process is close to
1.4 which gives a fracture roughness ( = 0.74. Neither ( = 0.70 or ( = 0.74 is
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Figure 2: Normalised damage profile perpendicular to the fracture for D = 0.7
and lattice sizes L = 10(x),20(0),30(A) and 40(¢). The profiles are averages
where each profile is shifted such that they are centred around the mean value.
The localisation is clearly seen.
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Figure 3: Measurement of v for the disorder D = 20 The fluctuations in the
density of broken bonds scale as L=/, The solid line is for v = 1.43.



excluded by our data for ¢ so more high quality measurements are needed to be
able to separate between the two proposed values for (.

REFERENCES
[1] Mandelbrot B. , Passoja D. and Paully A., Fractal characters of fracture
surfaces of metals, Nature, 308,721, 1984
[2] Daugier P., Nghiem B. , Bouchaud E. and Creuzet F., Pinning and depinning
of crack fronts in heterogeneous materials, Phys. Rev. Lett. 78,1062, 1997
[3] Enggy T. and Malgy K., Roughness of two-dimensional cracks in wood, Phys.
Rev. Lett. 73, 834, 1994
[4] Schmittbuhl J. and Hansen A., Origin of the universal roughness exponent of
brittle fracture surfaces: Stress-weighted percolation in the damage zone, Phys.
Rev. Lett. 90, 045505, 2003
[5] Moukarzel C. and Duxbury P., Comparison if rigidity and connectivity per-
colation in two dimensions, Phys. Rev. E. 59, 2614, 1999



