
 
 

MIXED MODE FRACTURE IN CONCRETE AND MASONRY 
 

J. Alfaiate1, L. J. Sluys2 & E. B. Pires1 

1Dept. Eng. Civil and ICIST, Instituto Superior Técnico, Lisboa, Portugal 
2Dept. of Civil Eng. and Geosciences, Delft University of Technology, Delft, The Netherlands 

 
ABSTRACT 

In this paper, the finite element method is used to study mixed mode crack propagation in concrete and ma-
sonry. A discrete approach is adopted: cracks are allowed to evolve along discontinuity surfaces, called ficti-
tious cracks. These discontinuities are modelled using: i) interface elements, in which case a numerical algo-
rithm is adopted which avoids the need to remesh and ii) embedding discontinuities, according to a discrete 
strong embedded discontinuity approach. The effect of shear stresses which develop at the discontinuity sur-
faces is analysed. For this purpose: i) different values for mode-II fracture energy and cohesion are consid-
ered and ii) different softening criteria, both isotropic and non-isotropic, are adopted for the evolution of the 
limit surfaces in the discontinuity’s stress vector space. It is found that the amount of shear stresses present in 
the discontinuity is the factor which influences most significantly the structural behaviour of both concrete 
and masonry. 
  

1 INTRODUCTION 
In this paper, Hillerborg’s discrete approach is adopted to study mixed-mode crack propagation on 
concrete and masonry. Cracks are allowed to evolve along discontinuity surfaces, called fictitious 
cracks. Thus, microcracking is localized on an internal boundary with initial zero width, which 
eventually evolves into a stress free crack. In the past, the discrete approach has been modelled by 
means of interface elements, introduced along interelement boundaries. A numerical algorithm, 
presented in Alfaiate et al. [1], is adopted, both for prescribed and non-prescribed cracking, with-
out the need to remesh. According to the work presented in Alfaiate and Sluys [2], these localized 
surfaces can be modelled within the framework of a discrete approach by means of embedding 
discontinuities into the finite elements. This embedded discontinuity approach is also followed 
here.  
 Cracks are allowed to open according to a mode-I fracture criterion and crack growth is mod-
elled under mixed-mode conditions using either plasticity or damage laws. Both aggregate inter-
lock and shear fracture are taken into account; the corresponding dissipated energy depends upon a 
mode-II parameter, denoted by GF

II, as well as on a limit surface defined in the discontinuity’s 
stress vector space. In the numerical tests performed on notched concrete specimens, different 
models are adopted in order to evaluate the differences between mixed-mode and pure mode-I 
analyses. In particular, the effect of shear stresses which develop at the discontinuity surfaces is 
analysed. For this purpose: i) different values for GF

II and cohesion are considered and ii) different 
softening criteria, both isotropic and non-isotropic, are adopted for the evolution of the limit sur-
faces. It is found that the structural response in mixed-mode does not depend significantly on the 
cohesion or GF

II; conversely, the adoption of different softening criteria gives rise to different post-
peak load-displacement curves. In particular, non-isotropic softening rules which allow for higher 
shear stresses to develop at crack faces approximate better the post-peak regime which was ex-
perimentally observed. 
 This analysis is further extended to a masonry wall. The brick-mortar joints are modelled by 
interface elements and the limit surfaces mentioned above are used to evaluate the dissipation of 



energy under slippage. Interestingly, it is found that different limit surfaces and softening criteria 
can lead to different failure mechanisms as well as different ultimate loads, which is verified ex-
perimentally (Alfaiate and de Almeida [3]). 
 

2 MATERIAL MODELS 
Two different zones within the material can be distinguished in the adopted model: i) the bulk, for 
which an elastic or plastic relationship is assumed and: ii) the fracture zones, which are modelled 
by a discrete approach. In a discrete approach the fracture zone, where microcracking occurs, is 
assumed to localise into surfaces of discontinuity. It is assumed that crack initiation occurs accord-
ing to mode-I fracture: when the maximum principal stress reaches the tensile strength of the mate-
rial, ft, a fictitious crack is introduced perpendicularly to the maximum principal stress direction. In 
this section, two different types of discrete constitutive models are considered for the fracture 
zones: i)  damage models and ii) plasticity models. 
 
2.1 Damage models  
Two damage models are considered to describe the constitutive response at a discontinuity surface. 
In the first model isotropic damage is adopted, whereas a non-isotropic response is obtained with 
the second model. The damage model with isotropic softening is derived from a thermodynamical 
framework through the definition of the free energy per unit area, Ψ, given by (Alfaiate et al. [4]): 

 Ψ(w,d) = (1−d)Ψ0(w) = 
1
2  (1−d) w⋅⋅⋅⋅D

el
Γd ⋅⋅⋅⋅w (1) 

where w is the displacement jump vector at the discontinuity surface Γd, D
el
Γd  is a second order 

elastic constitutive tensor and d is a scalar damage parameter. Standard thermodynamic arguments 
lead to the state equation 

 t = 
∂Ψ
 ∂w  = (1−d) D

el
Γd ⋅⋅⋅⋅w. (2)  

Since the elastic free energy per unit area is positive, the rate of d cannot be negative, i.e., 
⋅⋅⋅⋅
d ≥0. An 

exponential softening evolution law for the damage parameter d is adopted.  
The non-isotropic damage model consists of a 2D version of the model introduced in Wells and 

Sluys [5]. A loading function is defined as:  
 f(wn,κ) = wn − κ (3) 
where the internal variable κ is taken as the maximum normal relative displacement reached 

(κ=max(wn), 
⋅⋅⋅⋅
κ ≥0). The total t-w relationship is given by: 

 tn = ft0 exp �
�

�
�−

ft0

GF
κ ,   ts = Ds0 exp( )−hsκ ws, (4) 

where tn, ts, wn and ws are the normal and tangential components of vectors t and w, respectively, 
Ds0 is the initial shear stiffness at crack initiation, hs = ln (Dsk/Ds0) and Dsκ is the shear stiffness 
which is adopted for an advanced state of damage.  
 
2.2 Plasticity model 
A plasticity model is also adopted to model the fracture behaviour of the fracture zones. In this 
model, a yield surface is defined in the discontinuity’s stress vector space {tn, ts}, such that both 
tensile mode-I cracking and a modified friction Coulomb envelope are taken into account. In fig. 1-
a) four adopted yield surfaces are shown. The limit surface f1 is a tensile cap corresponding to 
mode-I crack evolution. Surface f2 represents the Mohr-Coulomb friction law. The curved surfaces 
f3 and f4 correspond to modified Coulomb friction laws in which the shear stresses remain bounded, 



with the limitation on the shear strength being more pronounced for surface f4. Both the tensile 
strength ft and the cohesion c soften according to exponential flow rules (Alfaiate et al. [3,4]). Both 
non-isotropic and isotropic softening criteria are adopted. In the former case, surfaces f1 and f2 are 
used and the shear stress at the intersection of both surfaces is kept constant as depicted in fig. 1-
b). An isotropic softening criterion is also adopted; in this case, the limit surfaces contract towards 
the origin such that the tensile strength and the cohesion decrease proportionally the same amount, 
as depicted in fig 1-a) for surface f4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: adopted yield surfaces in the discontinuity’s stress vector space 
 

3 NUMERICAL RESULTS 
 
3.1 Concrete 
The concrete tests consist of two single edge-notched beams submitted to shear. The first beam was 
experimentally tested by Arrea and Ingraffea [6], whereas the second beam, with different dimen-
sions but subjected to similar boundary conditions, was tested by Schlangen [7]. The first beam is 
analysed with interface elements, adopting the algorithm introduced in Alfaiate et al. [1], in which 
the properties of the fictitious cracks are projected on the directions of the interelement boundaries 
such that no remeshing is necessary. Four different numerical tests are presented. In Table 1 the 
parameters and softening criteria adopted are shown. In all tests the plasticity model described in 
section 2.2 is adopted.  The first test corresponds to pure mode-I cracking since no shear stresses 
are allowed in the fictitious crack. In the last three tests, data is chosen in order to show the impor-
tance of the shear behaviour in the fictitious crack. In the second test a very high GF

II/GF relation is 
adopted (GF

II/GF = 100), where GF and GF
II are the fracture energies in mode-I and mode-II frac-

ture, respectively. In the third test a cohesion value which is twice the value of the tensile strength 
is adopted, and in the fourth test a non-isotropic softening criterion is considered. In fig. 2-a) the 
deformed mesh obtained form test No.2 is shown. In fig. 2-b) the P-CMSD (load - crack mouth 
sliding displacement) relations are presented. The experimental results lie in the shadowed region 
of fig. 2-b). From fig. 2-b) it is clear that, according to the model and data proposed, small differ-
ences are observed between pure mode-I and mixed-mode analysis for the peak load. From Test 
Nº4, it is found that the post-peak response is stiffer than the other two. An explanation for this is 
advanced below. The second beam is analysed using embedded discontinuities. 



Test 
No. 

E 
(GPa) 

ft 
(MPa) 

c0/ft  GF 
(N/mm) 

GF
II/GF  φ 

friction  
softening criterion 

1 24.8 2.8 0 0.1 0   
2 24.8 2.8 1 0.1 100 30º isotropic 
3 24.8 2.8 2 0.1 1 30º isotropic 
4 24.8 2.8 1 0.1 1 30º non-isotropic 

Table 1: Material parameters and softening criteria adopted in the first numerical tests. 
The material properties adopted are: Young’s modulus E = 35 GPa; Poisson's ratio ν = 0.15; ten-
sile strength ft = 2.8 MPa; fracture energy GF = 0.1 MPa·mm. In these numerical tests three differ-
ent constitutive models are adopted:  
1. the isotropic damage model described in 2.1.1, with c0 = ft0; 
2. the non-isotropic damage model described in 2.1.2, with Ds0 = 103 MPa/mm; 
3. the plasticity model described in section 2.2; in this case, two different tests are performed:  

i) c0 = ft0= 2.8 MPa, GF
II = GF = 0.1 N/mm and ii) c0 /ft0 = GF

II/GF = 2.  

 

 

 

 

 

 

 

 

 

 
Figure 2: a) deformed mesh (test No.2) and b) load-CMSD curves 

The load-CMSD curves are shown in fig. 3. It is clear that the result obtained with the non-
isotropic damage model, presented in fig. 3-b), is significantly different from the others: in this 
case, the higher shear stresses allowed in the discontinuity give rise to a stiffer softening response 
which is closer to the experimental one. In fig. 4 the relations between the shear stresses at the 
notch and the CMSD (τnotch-CMSD curves) obtained with the different models are presented. In 
this figure it can be confirmed that the non-isotropic damage model gives rise to higher shear 
stresses than the other models.  
 
3.2 Masonry 
A wall with an opening is numerically analysed with the plasticity model and the four limit sur-
faces, f1, f2, f3 and f4, defined in section 2.2. Cracking of the bricks is modelled using the numerical 
algorithm introduced in Alfaiate et al. [1] and crushing is modelled by means of a continuum plas-
ticity model. In the first test, surfaces f1 and f2 are adopted for the mortar interfaces and it is veri-
fied that the numerical peak load is far beyond the experimental value, as shown in fig. 5. The de-
crease of shear strength with high compressive stresses, introduced by surfaces f3 and f4, allow for a 
better approximation of the experimentally obtained peak loads. The higher peak load value corre-



sponds to a failure mechanism which involves the formation of plastic hinges, induced by crushing 
of the bricks. The lowest peak load corresponds to the formation of a different failure mechanism, 
where the amount of slippage at the mortar interfaces is such that no crushing occurs in the bricks. 
These different mechanisms, which were also observed experimentally, are depicted in fig. 6, as 
well as the corresponding deformed meshes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: load-CMSD curves obtained with embedded discontinuities 
 

 

 

 

 

 

 

 

 

 
Figure 4: τnotch-CMSD curves 

 
4 CONCLUSIONS 

From all tests analysed, it is verified that the amount of shear stresses present at the discontinuities 
is the most important factor in mixed-mode fracture of both concrete and masonry. In concrete, it is 
found that larger shear stresses lead to both a stiffer post peak response and to a better approxima-
tion of the softening regime experimentally observed; it is also found that mixed-mode fracture 
does not depend significantly either on the mode-II fracture energy or on the cohesion. In masonry, 
if slippage at the mortar interfaces is allowed to fully develop, the limitation of shear stresses under 
high compressive stresses may lead to a smaller peak load as well as different failure mechanisms, 
which was also confirmed experimentally. 



 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: load-displacement curves 

 

 

 

 

 

 
Figure 6: deformed meshes 
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