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ABSTRACT 

The crack growth rates of 7075-T651 aluminum alloy found in humid air, technically purified nitrogen and a 
fine vacuum are significantly different near threshold. The average crack growth rate da/dN is theoretical 
explained as a micromechanical quantity multiplied by a probability. The micromechanical quantity has the 
dimension of a length. In the case of corrosive environments, e.g. air or nitrogen (with traces of water vapor 
and oxygen) it is the thickness of the oxide film. In the case of vacuum, it is the typical distance between 
cyclic slip planes. The da/dN versus ∆Keff curve represents the probability per cycle, that the crack front is 
moving one step forward. A multi-body model developed by Masing for the stress-strain curve is adapted to 
the threshold in fatigue crack growth. In our model, the material elements at the crack front are linear-elastic 
quasi-brittle. The fracture strength is statistically distributed and the da/dN curve represents its distribution 
function. For higher loads and independent from the environment crack tip blunting is also active. The 
transition seen in the da/dN curve represents the probability that the crack front is blunting. The 
micromechanical parameter for this mechanism is the striation spacing seen on crack surfaces. The 
probability functions for 7075-T651 have been determined and will be discussed.  
 

1  INTRODUCTION 
 
Microstructural parameters influencing the fatigue crack growth process like the distance between 
precipitates, the grain size and specially the grain orientation are randomly distributed. The 
assumption that each cycle of ∆Keff causes a ∆a increment along the full crack front is in general 
not valid. Especially near threshold the crack is growing irregularly. This has been found in 
fractographic examinations of crack surfaces, for example in [1]. If the crack propagation is 
monitored at a fixed location at the crack front, e.g. at the front or the back side of the specimen, 
then the crack growth rate at constant ∆Keff loading shows a big scatter. This scatter results from 
the different configurations of the grain structure relative to the moving crack tip.  
     The crack front can be divided into many segments. Each crack front segment is limited by the 
grain boundaries of the grain crossing the crack front. For a single segment, the grain orientation 
and the distance from the crack tip to the back face grain boundary are given. These 
microstructural parameters define the local material resistance for the crack front segment. Instead 
of a ∆a increment along the full crack front, there is only a certain probability that a crack segment 
moves one ∆a step forward, see Figure 1. Each crack front segment has this probability to move or 
to stay. However these probabilities along the crack front are not independent of each other. Once 
a segment is one step further than its neighbors his own probability to move the next step is 
lowered and the probability of the neighbors to join the segment ahead is increased. This coupling 
effect of the segments along the crack front is strong. This can be seen in the fact that the crack 
shape remains smooth when the crack is propagating through the specimen. Khen and Altus have 
incorporated this coupling effect in their numerical model and they came to the conclusion that the 
crack length distribution in the long crack regime is independent of the elements interaction 
probability and is given by the strength distribution only [2]. Due to this strong coupling effect, the 



local probabilities are not needed to be formulated along the crack front. The fatigue crack process 
can be modeled based on an average of these probabilities.  
 

 

 
 
Figure 1: Microstructural configuration at the crack front: The crack front cuts many grains with 
different orientations and grain length; the crack is moving in one crack front segment aij by ∆aij.  
 
 
    The micromechanical function of the local resistance against crack advance and the ∆a step in a 
crack front segment should be closely related to the macroscopical loading parameter ∆Keff and the 
average crack growth rate da/dN. A similar relationship between a microstructural and a 
macromechanical material behavior has been given by Christ [3] for the stress-strain behavior in 
metals. This Masing model will be presented first before an analogous model is presented for a 
crack under cyclic loading.  
 

2  THE NUMERICAL MODEL 
 
1.1 The Original Masing Model 
The elastic-plastic deformation behavior of a metal in the one-dimensional stress state can be 
measured with the stress-strain curve. This is a macroscopical description of the material behavior, 
which does not distinguish between the many grains in the metal. The macroscopic material 
behavior is understood to represent the average of many individual microstructural elements. Each 
element has a very simple behavior and in the case of the Masing model they are connected in 
parallel. The single element is an ideal elastic perfectly plastic body. At each strain level not every 
element is in the same situation what yielding is concerned. The weak elements are already yielded 
because their yielding limit is exceeded. The strong elements are still in the linear elastic regime. 
The relation between the microscopical material strength distribution function fp and the 
macroscopic stress-strain curve is given below:  
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In this model the single event is a microscopical plastic deformation and the macroscopic effect is 
the deviation of the stress-strain curve from the ideal elastic line.  



 
1.2 The Masing Model Adapted to the Threshold for Fatigue Crack Growth 
 
A Masing model can be formulated for the cyclic behavior of a cracked body. The macroscopic 
material behavior is given by the average crack growth rate da/dN of a constant amplitude loading. 
On a microscopic scale the material consists of many segments. A row of segments immediately 
ahead of the crack front is loaded by the singular stress field given by the stress intensity factor 
range ∆Keff. In the rows behind the crack front the segments have been separated, see Figure 2. 
Each segment has a quasi-brittle characteristic. 
 

 
 

Figure 2: Micromechanical configuration at the crack front and the modeling with single elements 
 
 
1.2.1 The Fatigue Crack Growth Threshold in Vacuum 
 
In vacuum, the cyclic slip process gives the near threshold crack growth rate. The interaction of 
the cyclic slip process and the interatomic bond rupture of each single element can be explained as 
follows: Below a local critical stress, the crack tip reacts purely elastically and no crack growth 
results. This is the definition of the fatigue crack growth threshold. At the critical shear stress 
dislocations are free to move in the slip system crossing the crack tip. The shear deformation in 
their slip plane results in atomic bond rupture at the crack tip. The pair of atoms at the crack tip 
has lost their contact. The separation of a single element is controlled the local shear deformation 
in the slip plane. Due to the statistical distribution of the orientation of the grains the local 
resistance against dislocation motion is statistically distributed. If we define a variable ∆Kj,slip as 
the quantity for this local resistance of the element j against dislocation motion, crack tip advance 
can be formulated as follows:  
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     The local resistance against dislocation motion is depending on microstructural parameters and 
therefor ∆Kj,slip is statistically distributed:  
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     Pslip is the distribution function. It shows the probability that dislocations are free to move on 
the slip system at position j. Because this distribution function is independent of the position in the 
material, it is also valid along the crack propagation direction [4]. The crack growth rate is the 
average of all the elementary crack growth steps:  

 ( )da
dN K a p K d K p K d Keff pl slip i slip i slip

K

slip i slip i slip
K

eff

eff

∆ ∆ ∆ ∆ ∆ ∆
∆

∆

= ⋅ ⋅ + ⋅ ⋅∫ ∫
∞

( ) ( ), , , ,
0

0  

 ( )effslippl

K

slipislipislippl KPaKdKpa
eff

∆⋅∆=∆⋅∆⋅∆= ∫
∆

0
,, )(  (4) 

Where the probability density function is assumed to be of Weibull type [5]:  
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1.2.3 The Fatigue Crack Growth Threshold in Corrosive Environments 
 
In the case of the fatigue crack growth behavior in corrosive environments a similar approach can 
be used as for the case in vacuum. Instead of the cyclic slip process, the oxide film fracture 
mechanism is controlling the near threshold regime. The local critical stress intensity factor range 
is given by the ultimate strength of the oxide film ∆Kj,ox.  
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Similar to the derivation for local cyclic slip mechanism, the crack growth rate can be found as:  
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And again the probability density function is assumed to be of Weibull type:  
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1.2.4 The Fatigue Crack Growth Threshold of the Blunting Mechanism 
 
The transition from near threshold regime to the Paris regime is a threshold for the blunting 
process. The da/dN versus ∆Keff relation near this transition represents the distribution function of 
the local resistance against blunting ∆Ki,bl. In the case of vacuum this results in: 
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3  DETERMINATION OF THE MODEL PARAMETERS 
 

The model parameters are found by adjusting the da/dN functions given in eqns (7) and (9) to 
the da/dN data found in constant amplitude tests.  

The model parameters for 7075-T651 in air, nitrogen and vacuum are given in Table 1. The 
data in nitrogen allow us to choose clearly the model parameters. Figure 3 indicates that 
reasonable values for the parameters could be found, such that the model fits well with the 
measured crack growth rates.  
 
 

0.001

0.010

0.100

1.000

10.000

100.000

1'000.000

10'000.000

1 10 100∆Keff [MPam0.5]

da
/d

N
 [n

m
/c

yc
le

]

R = 0.1, f = 10 Hz

R = 0.15, f = 83 Hz

R = 0.3, f = 83 Hz

R = 0.5, f = 83 Hz

J.Petit (86): R = 0.1, f = 35 Hz

J. H. Kwon (86): R = 0.1, f = 35 Hz

Model with oxide layer

 
 

Figure 3: Fitted Probability Functions and Crack Growth Rate Data for 7075-T651 in air 
 



 
Table 1 Parameters of the Probability Functions 

 
Parameter 7075-T651 in 

Air 
7075-T651 in 
Nitrogen 

7075-T651 in 
Vacuum 

Unit 

∆Kth,slip - - 2.65 MPa√m 
∆Kth,ox 1.35 1.40 - MPa√m 
∆Kth,bl 3.00 4.10 4.50 MPa√m 
αslip  - 2.00 - 

αox 0.75 0.10 - - 

αbl 0.75 1.50 1.75 - 
 
 

4  DISCUSSION 
 
The irregular crack growth behavior near threshold has been model by a numerical approach. The 
average crack growth rate is interpreted as the product of a micromechanical length, e.g. the 
distance between slip planes or the oxide film thickness and a probability. Crack growth rate data 
has been used to find appropriate parameters for the probability functions. The transition seen at 
higher load levels is also seen as a threshold. The mechanism initiated in this regime is crack tip 
blunting with the fatigue striation spacing as the relevant micromechanical length. The proposed 
model is able to explain the deviations found in the da/dN data from classical theoretical models 
for crack growth, such as the Paris equation or a Forman fit.  
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