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ABSTRACT

Ferroelectric materials are nowadays widely used in sensor and actuator applications.
Their applicability in cyclic loading however is limited by the so called ’electric fatigue’
effect. Under this terminology various micro-mechanical phenomena are summarized.
On the macroscopic level a reduction of the mechanical output for a fixed electric ex-
citation is observed. One of suspected micro-mechanical mechanisms is the hindering
and blocking of domain wall movement within the material. Possible sources of these
blocking phenomena are point defects in the material. The point defects interact with
the domain wall (inhomogeneity) and the external applied loads. Experimentally ob-
servations suggest that these point defects are oxygen vacancies. Their presence and
characterization is however an experimentally difficult task. The numerical simulation
is intended to provide a qualitative understanding of the interaction of point defects
and domain walls. In order to model these inhomogeneities the material forces or
driving forces acting on the domain wall are identified. Once the coupled field equa-
tions are solved by Finite Elements the material forces are calculated to investigate
possible motions of the domain wall. At the present state the work does not incorpo-
rate a kinetic law, but is based on quasi-equilibrium considerations. The numerical
simulations will demonstrate the effect of point defect position and concentration on
the driving force acting on the domain wall. Eventually leading to a possible blocking
of the domain wall. In order to overcome these obstacles higher external fields are
necessary to move the domain wall again.

1 INTRODUCTION

To identify the material forces acting on domain walls a variational procedure will be
presented which takes variations with respect to the fields and the domain wall posi-
tion into account. As a result of the variational procedure the field equations and the
material forces, also termed driving force in the following, are derived. For a general
introduction to the theory of material forces see [1–3]. The variational procedure can
also be used to derive the discretized field equations within a Finite Element setting.
Details are omitted here for the sake of brevity. For a discussion of material forces in
the context of Finite Element discretizations see for example [4,5].
Examples will demonstrate the interaction of point defects with a single domain wall.
It will be shown that point defects are capable of blocking a domain wall, i.e. that



the driving force acting on the domain wall is reduced. This effect is experimentally
observed, see for example [6].

2 VARIATIONAL PROCEDURE
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Figure 1: Body with domain wall

We assume that the body under considera-
tion B contains a domain wall S which sep-
arates the body into two domains B+ and
B−. The normal nS to the domain wall S
points from the domain B− into B+, see
fig. 1 for details. The domain wall is as-
sumed to be a perfect interface, where the
jump in the displacements [[u]] = 0 and the
jump in the electric potential [[ϕ]] = 0. In a
purely mechanical context a similar deriva-
tion can be found in [7]. The electric en-
thalpy H is introduced as

H(ε, E) =
1

2
(ε − ε0) :

[ �
(ε − ε0)

]
− (ε − ε0) : (� TE) −

1

2
E · (AE) − P 0 · E. (1)

It depends on the strain ε and the electric field E. The inelastic strain (eigenstrain)
ε0 is introduced to account for point defects and different irreversible strains in the
different domains, as will be discussed later. The irreversible polarization is taken
into account by the term P

0. The elasticity tensor
�

, the piezo-electric tensor �
and the dielectric tensor A are material constants, which can vary from domain to
domain. The electric enthalpy serves as a potential for the symmetric stresses σ and
the electric displacements D, i.e.

σ =
∂H

∂ε
=

�
(ε − ε0) − � TE,

D = −
∂H

∂E
= � (ε − ε0) + AE + P

0.

(2)

The total potential of the system is now given by internal potential Πint (incorporating
H) and the potential Πext of external forces and external charges.

Π[u, ϕ,S] =

∫

B+/−

H dV

︸ ︷︷ ︸

Πint

−

∫

B

(f · u − qϕ) dV −

∫

∂Bt

t∗ · u dA +

∫

∂BQ

Q∗ϕ dA

︸ ︷︷ ︸

Πext

(3)

The total potential is a functional of the displacement field u, the electric potential ϕ
and the position of the domain wall S. The fields and the position of the domain wall



will be taken into account when computing the variation of the total potential, as the
domain wall is assumed to be mobile. The variation of the total potential yields

δΠ = −

∫

B+/−

(divσ + f ) · δu dV −

∫

B+/−

(divD − q)δϕ dV

+

∫

Bt

(σn− t∗) · δu dA +

∫

BQ

(D · n + Q∗)δϕ dA

−

∫

S

[[(σnS ) · δu]]
︸ ︷︷ ︸

I

dA −

∫

S

[[(D · nS )δϕ]]
︸ ︷︷ ︸

II

dA −

∫

S

[[H]]δwdA,

(4)

where the kinematic relation ε = 1

2

(
gradu + (gradu)T

)
and the definition of the

electric field E = −gradϕ were used. The variations δu and δϕ vanish on the part of
the boundary ∂Bu or ∂Bϕ, where either displacement or electric potential boundary
conditions are prescribed. In the expressions I and II the following jump relations on
the domain wall S are used

[[ab]] = [[a]]〈〈b〉〉+ 〈〈a〉〉[[b]], [[δu]] = −δw[[gradu]]nS , [[δϕ]] = −δw[[gradϕ]]nS (5)

to obtain

[[(σnS) · δu]] = [[σ]]nS · 〈〈δu〉〉 − 〈〈σnS 〉〉[[gradu]]nSδw

[[(D · nS)δϕ]] = [[D]] · nS 〈〈δϕ〉〉 − 〈〈D · nS〉〉[[gradϕ]]nSδw.

(6)

Note that δw is the variation of the domain wall in normal direction. Thus the
variation of the total potential becomes

δΠ = −

∫

B+/−

(divσ + f) · δu dV −

∫

B+/−

(divD − q)δϕ dV

+

∫

∂Bt

(σn − t∗) · δu dA +

∫

∂BQ

(Dn − Q∗)δϕ dA

−

∫

S

([[σ]]nS ) · 〈〈δu〉〉 dA −

∫

S

([[D]] · nS )〈〈δϕ〉〉 dA

−

∫

S

([[H]]− 〈〈σnS 〉〉[[gradu]]n− 〈〈D ·nS 〉〉[[gradϕ]]nS)δw dA.

(7)

Arbitrary variations δu, δϕ, 〈〈δu〉〉, 〈〈δϕ〉〉 yield the equilibrium equations

divσ + f = 0 in B+/−,

[[σ]]nS = 0 on S
(8)

and the electro-static relations

divD − q = 0 in B+/− ,

[[D]] · nS = 0 on S
(9)



in the bulk and on the domain wall together with the respective Neumann boundary
conditions:

σn = t∗ on ∂Bt and Dn = −Q∗ on ∂BQ. (10)

Thus in equilibrium and under electrostatic conditions the variation can be written
compactly as

δΠ = −

∫

S

(nS · ([[Σ]]nS))
︸ ︷︷ ︸

τn

δw dA, (11)

where the energy-momentum tensor (or the Eshelby-stress tensor) is introduced

Σ = H1− (gradu)Tσ − gradϕ ⊗ D (12)

and a (scalar) driving force τn is identified as

τn = nS · ([[Σ]]nS ). (13)

This motivates that the domain wall will always move according to the driving
force τn, to reduce the total potential. It is emphasized here, that from energy con-
siderations and the variational procedure presented here the kinetic relation between
the domain wall movement and the driving force cannot be deduced.

3 POINT DEFECTS

Point defects model on the continuum level the occurrence of a foreign atom or a
vacancy. Such defects disturb the deformation and charge state of the otherwise
homogeneous material. To model a point defect in the mechanical sense it is asso-
ciated with an inelastic eigenstrain that is localized at the position xD of the point
defect(center of dilatation)

ε0 → α1δ(x − xD). (14)

The parameter α represents the strongness of the mechanical defect. For α ≷ 0 a
foreign atom is modeled that is too large/small for the surrounding crystal lattice.
The inelastic strain is assumed to be isotropic. It will enter the problem through the
constitutive equations (2).
In the electric setting the point defect is modeled a a localized volume charge

q → βδ(x − xD), (15)

with the density β. In the electric sense the point defect will be considered on the
level of the balance equations (9)1.

4 EXAMPLES
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Figure 2: Interaction of domain wall and point defect: a) stress σ22, b) electric
displacement D2, c) driving force τn

The material data are chosen to mimic the piezo-electric behavior of PZT. The point
defect properties are set to model a positively charged vacancy, i.e. α < 0 and
β > 0. The sample problem consists of a rectangular region of 100 nm × 200 nm size
with a 180◦ domain wall. The left domain is polarized upwards, while in the right
domain the irreversible polarization P 0 points downwards. The system is loaded by
a potential difference of 600 V/mm in the vertical direction. The vertical boundaries
are insulated, i.e. D · n = 0. With respect to the mechanical fields traction free
conditions are assumed everywhere.
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Figure 3: Resulting driving force
on a domain wall

Fig. 2 shows the results for no point defect and a
point defect which is located at a distance of 75,
50 and 25 nm from the domain wall. The point
defect causes much higher stress levels than the
inhomogeneity in the defect free state, therefore
the levels of the contours for the σ22 plots were
changed. Also in the plots of the driving force the
scaling of the arrows was changed to ensure a good
visibility of the driving force distribution.
The intensity of the interaction of the domain
wall and the defect increases when the defect ap-
proaches the domain wall. But even in the situa-
tion, where the defect is positioned far away from
the domain wall, the sign of the driving force τn is changed in the upper half of the
domain wall. Thus the overall driving force defined as

Tn =

∫

S

τn dA (16)

decreases as compared to the situation where no defect is present. In fig. 3 the re-



sulting driving force Tn is analysed as a function of the distance d between the defect
and the domain wall. The resulting driving force Tn is normalized with the resulting
driving force of the defect free situation T 0

n . The reference length a is the height of the
domain wall. From fig. 3 it can be seen, that the driving force is reduced by about
30% if the defect approaches the domain wall. If domain wall and defect become
closer the numerical resolution of the fields and the strong gradients in the vicinity of
the defect become poor, therefore no trustworthy results are obtained in this strong
interaction case. But the trend is obvious, the occurrence of point defects reduces
the driving force and therefore has the possible capability to block domain walls and
pin them. In order to move the domain wall a higher external field, i.e. potential
difference, is needed.
It is also mentioned that by increasing the point defect concentration the domain wall
can finally be stopped. If point defects are placed randomly in the left domain the
resulting driving force will be reduced. For this set of parameter about seven point
defects will be strong enough to change the sign in the total driving force, thereby
stopping the domain wall.
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