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ABSTRACT
There is an increasing demand for modern fatigue assessment methods to be applied to railway axles
especially in high speed train applications, where high strength steel are used. In this paper we develop a
fretting analysis based on facture mechanics to axle press-fittings by incorporating the ‘short crack effect’.
The analytical results have been compared with a series of fatigue tests obtained on small scale specimens.

1  INTRODUCTION
The press fitting zone in railway axles is critical from the fatigue resistance point of view, due to
the combined action of contact stresses and wear phenomena, generally called fretting condition
[1,2,3]. Under fretting conditions, short cracks nucleate because of cyclic contact shear stresses
superimposed onto the fatigue stresses. Giannakopoulos, Lindley e Suresh [4] suggested an
approach to fretting based on contact singular stress field, defining an analytical model (Crack
Analogue) for SIF’determination. Another approach is that suggested by Kondo [5], which is
based on the maximum local stress at the contact edge (Hot-Spot stress).

In this paper the fretting problem in press-fittings made of high strength steels is analysed from
the fracture mechanics point of view, considering the short crack effect. In fact it has been shown
that the scale affects in fatigue strength, which are typical for high strength axles, can be assessed
in terms of fatigue threshold for short cracks [6]: it appears therefore important to analize the
fretting in terms of short cracks. The research has addressed in particular an experimental
investigation and a numerical analysis where FE calculations together with WF have allowed us to
determine the SIF at the tip of prospective cracks in the press-fitting. Fatigue limit was then
estimated as the threshold condition of the prospective cracks.

2   MATERIAL AND EXPERIMENTAL DETAILS

2.1 3D fretting fatigue tests
Fatigue tests were carried out on small scale specimens (fig. 1) with a press fitting. The diameter
of the press fitting is 11mm. Specimens were made of a 30NiCrMoV12 steel (ultimate tensile
strength 1050 MPa, yield strength Rp0,2=995 MPa, cyclic yield strength 730 MPa [6] ). A cylinder
in R7T steel which simulates the press fitted wheel was mounted onto the specimens. To obtain
the desired value of pressure which is about 50-75 MPa, specimens and cylinders were machined
to have an interference of 0.0121-0.0184 mm.

Fig.1: The small scale  specimen with a press-fitted cylinder.



Fatigue tests were carried out  under rotating bending on a four point machine (capacity 35Nm) at
the speed of 1500 rpm. The experimental S-N diagram for 3D specimens at R=-1 obtained with an
average contact pressure of 70MPa, is shown in fig.2. The fatigue limit is approx. 200 MPa.
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Fig.2: S-N diagram for 3D fretting specimens..

3  EXPERIMENTAL EVIDENCES

3.1 Fractographic evidences
Fractographic analysis shows how the failure zone due to fretting is not located at the end of the
contact, but the distance from the contact edge is in the range 0.5-1.2 mm. This is because, even
though the tangential stress responsible of fretting failure is concentrated at the contact edge, the
stress due to the constant bending is nearly zero.

     

     
Fig.3: Fractographic observations: a)  surface damage near fracture surface; b) fretting scars; c and

d) non propagating cracks observed on polished sections.



In fig.3.a it is possible to note the difference between the no-slip zone and the partial slip zone,
characteristic of fretting condition, where micro displacements takes place. In fig.3.b the presence
of fretting scars is underlined. In fig.3.c and fig3.d several non propagating cracks are observed on
polished sections of run-out specimens. In particular, two kind of cracks can be noticed: the first
type inclined about 45° from the surface normal. These micro-fractures then can self-arrest or
deviate to the second type, which is almost perpendicular to the surface.

4  FRACTURE MECHANICS APPROACH TO FRETTING

4.1 Stress intensity factors
Observed the presence of numerous short not-propagating cracks of a few microns, it is possible to
justify the experimental results in terms of fracture mechanics, and then to determine a relation
between applied limit fatigue stress and ∆K threshold so justifying this great reduction in fatigue
resistance in components working in fretting conditions.
     The purpose of the analytical model is to find the trend of the SIF along the crack. Known the
contact stresses and consequently the stress field inside the material, KI and KII are determined
using the weight function method: for a surface crack perpendicular to the surface the weight
functions used are common in literature, whereas for an inclined surface crack those suggested by
Rooke [7] are preferred.
     The contact stresses due to press-fitting can be calculated developing a finite element model for
each specimen. Denoting σ(x) and τ(x) the normal and the tangential component of the nominal
stress along the crack (0≤x≤a) calculated according to a local coordinate system (xOy), the
expression for an inclined crack (θ respect to the normal to the surface) is:
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Fig. 4: Schematization of the problem.
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where g are the weight functions suggested by Rooke [7].
Whereas for a normal crack the normal stress contributes only for the mode I and the tangential
stress only for the mode II, in case of inclined crack both of the stresses contribute to the mode I
and mode II of crack propagation.
     It is observed that the fretting cracks frequently start inclined of an angle θ respect the normal
to the surface so that they will propagate below the contact zone, and then they deviates to reach
the direction normal to the surface. The first stage for short crack, called “stage I” is principally
due to the action of shear stress, whereas the second one, “stage II”, is driven by the effect of the



normal stresses. In presence of fretting condition, the stage I can be longer because of the high
shear stress on the surface; the crack propagates for a few ten microns inclined of about 45° and
then it can even stop, because of the high gradient of stress near the surface.
     The criteria used to determine the crack growth direction are the MSS (Maximum Shear Stress)
criterium for the stage I (mode II) and the MTS criterium for the stage II (mode I), for which the
angle of propagation θ corresponds to the maximum Kθ.

4.2 Short crack effect
Threshold experiments for short cracks in 30NiCrMoV12 steel have been obtained with fatigue
limit tests on micronotched specimens [6]. In particular data were interpolated with an El-Haddad
model (fig.5) [8]:
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Fig.5: Threshold for short cracks: a) equivalence between elliptical crack and surface

crack; b) Kitagawa diagram for surface crack.

5  APPLICATION TO FRETTING

5.1 Stress analysis for the press-fitting
To obtain the stresses along the contact between specimen and cylinder under bending, a detailed
FE analysis was carried out (Fig. 6a). Press-fitting was modelled as ‘hard contact’ with a friction
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Fig.6: FE analysis: a) 3D specimen finite element model; b) surface contact stresses.
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coefficient of 0.5-0.75, which leads to a slip zone at the end of the contact [9]. The stress
distribution of contact stresses is shown in Fig. 6b.

5.2 SIF for a prospective crack and fatigue limit
The superficial stresses in the contact zone obtained by the simulation are the sum of two
contributions: the stresses due to the nominal bending and the stress due to the press-fitting
interference. ∆KI and ∆KII can then be calculated using Eq. (1) for different crack positions and the
driving force for a prospective kink can be calculated according to MSS and MTS criteria [10]. In
particular analysis with MSS is able to describe the nucleation of cracks along 45° planes [9].

Fig. 8 shows the values of ∆Kθθ in function of the distance from the contact edge for a 50 µm
crack (perpendicular to the surface): ∆Kθθ exhibits a maximum at 0.8mm from the edge, in
agreement with the experimental observations. The propagation angle corresponding to ∆Kθθ,max  is
about 15°, while polished sections show a direction more or less perpendicular to the surface.
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 6  CONCLUSIONS
Fretting of press-fittings is one of the major fatigue problems of axles and new methods need to be
developed for assessing the structural integrity of these parts. In particular in this paper a fracture
mechanics approach to fatigue strength is presence of fretting is discussed.

To apply the LEFM approach, the SIF’s variation ∆KI and  ∆KII along a inclined or not surface
crack is calculated. It has been derived the value of  ∆Kθ, which compared with the fatigue
threshold ∆Kth, obtained following the short crack theory, leads to the fatigue limit prediction.. In
particular, estimations are very close to experimental results on 3D small scale fretting specimens,
even though the predicted length of non-propagating cracks is bigger than the observations.

This method, which leads to calculations similar to those of ‘R curve’, will also be applied to
the estimation of fatigue strength of ‘full-scale’ press fittings.
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