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ABSTRACT

This paper presents a post-bifurcation constitutive modeland a modified assumed enhanced
strain (AES) finite element implementation for simulating strong discontinuities in rock in
three-dimensions. A plasticity model appropriate for modeling pre-failure deformation re-
sponse in rocks is formulated with strong discontinuity (jump is displacement field), leading
to bifurcation criteria and a form for post-bifurcation constitutive equations. The finite ele-
ment implementation follows a modified AES approach, embedding the jump displacement
evolution within a bifurcated hexahedral element response[4]. Previously, for geomaterials,
this approach was developed for two-dimensional, plane strain problems [1] [3]. Although
this approach cannot resolve stress at a crack tip, it is useful for tracking failure in ge-
omechanical scale problems (m-km) involving rock, such as tunneling construction or oil
exploration. Numerical examples in three-dimensions willdemonstrate the approach.

1 Introduction

Strong discontinuities, or cracks, naturally occur in rockunder various loading conditions
[7]. We attempt to account for this form of localized deformation within the context of plas-
ticity theory and to track the crack propagation and post-bifurcation constitutive response
using a modified AES implementation. Details on plasticity models with strong discontinu-
ity (displacement jumps) and their numerical implementation are given in previous papers
[6] [1] [3] and will not be repeated here. The formulation in this paper is restricted to small
deformations.

2 Post-bifurcation model

Upon detecting the stress state at which a strong discontinuity mode of deformation is ad-
missible in a body (cf. [2] [5]), a post-bifurcation constitutive model is activated. In general,



such a model takes the following form for a discontinuity surface with unit normaln and
tangentt

traction : T = [Tn Tt] ; Tn = n · σ · n , Tt = t · σ · n (1)

displacement : u̇ = γ̇∂G(T ,q)/∂T (2)

yield function : F (T ,q) = 0 (3)

evolution equations : q̇ = γ̇h (4)

whereT is the traction vector with normalTn and tangentialTt components,σ is stress,
u̇ is the jump velocity,γ̇ is a plasticity consistency parameter,G is the plastic potential
function, q is a vector of internal variables,F is the yield function, andh is a vector of
hardening/softening functions.

We choose to implement this model using a modified AES approach, although this model
is not limited to this numerical implementation (cf. [4]).

3 Modified AES implementation

A modified AES implementation was developed for the bilinearquadrilateral element [1]
[3] and for the trilinear hexahedral element [4]. A standardAES implementation was used
for a constant strain tetrahedron [8]. In the modified AES implementation, the enhanced
strain variation is chosen to represent the post-bifurcation evolution equation in weak form
(cf. [1] for details). This leads to a more robust numerical method and a physical account
of the traction-displacement relationship along the discontinuity within the enhanced finite
element. The stress at timetn+1 is written as [1] [3]

σn+1 = σtrial
n+1 − D · Ge ∆ζe in Ωe

loc/S
e (5)

whereD is the elasticity matrix,∆ζe is the jump displacement over an increment in time
within elemente, Ωe

loc
denotes a localized region for elemente andSe its discontinuity

surface, and the regular part of the enhanced strain displacement matrixGe is

Ge = (me
⊗ ∇f e)s (6)

whereme is the direction of the jump displacement,∇ is a spatial gradient operator, and
(•)s denotes symmetric part. For the enhanced strain hexahedron, we need to determine
how to construct the enhancement functionf e. Details from [4] are repeated here. Figure 1
shows the five different cutting plane conditions for the hexahedron. Figure 2 demonstrates
how to determine whether a node is active in terms of constructing f e, which then may be
constructed as

f e(x) =

nactive∑

B=1

NB(x) ; ∇f e(x) =

nactive∑

B=1

∇NB(x) (7)

whereNB(x) is the trilinear shape function at nodeB.
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Figure 1: Enhanced strain hexahedron with slip plane showing five possible slip-plane cut-
ting conditions [4].
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Figure 2: Determining active nodes: ifn · (xA − xs) > 0 then nodeA is active wherexA

is the location of nodeA andxs is the location of a point on the slip plane with unit normal
n [4].



4 Summary

Future numerical examples will demonstrate the capabilityof the embedded discontinuity,
modified AES hexahedron to model post-bifurcation constitutive response in rock in three-
dimensions.

5 Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-
tin Company, for the United States Department of Energy under contract DE-ACO4-
94AL85000.

REFERENCES

[1] Borja, R.I. and Regueiro, R.A. Strain localization in frictional materials exhibiting dis-
placement jumps,Comput. Meth. Appl. Mech. Eng., (2001) 190: 2555−2580.

[2] Borja, R.I. and Aydin, A. Computational modeling of deformation bands in granular
media, I: Geological and mathematical framework,Comput. Meth. Appl. Mech. Eng.,
in press.

[3] Regueiro, R.A. and Borja, R.I. Plane strain finite element analysis of pressure-sensitive
plasticity with strong discontinuity,Int. J. Solids Struct., (2001) 38: 3647−3672.

[4] Regueiro, R.A., Foster, C.D., and Borja, R.I. Three dimensional modeling of slip sur-
faces in geomaterials,Proceedings of the 15th ASCE Engineering Mechanics Confer-
ence, Columbia University, New York, NY, (2002) CD-ROM.

[5] Regueiro, R.A., Foster, C.D., Fossum, A.F., and Borja, R.I. Bifurcation analysis of a
three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials,
GulfRocks 2004, Houston, TX, (2004) CD-ROM.

[6] Simo, J.C., Oliver, J., and Armero, F. An analysis of strong discontinuities induced by
strain-softening in rate-independent inelastic solids,Comput. Mech., (1993) 12: 277-
296.

[7] Wawersik, W.R., Rudnicki, J.W., Olsson, W.A., Holcomb,D.J. and Chau, K.T. Lo-
calization of deformation in brittle rock: theoretical andlaboratory investigations, In
Micromechanics of Failure of Quasi-Brittle Materials, Elsevier, New York, Eds. Shah,
S.P. and Swartz, S.E. and Wang, M.L., (1990), 115-124.

[8] Wells, G.N., and Sluys, L.J. Three-dimensional embedded discontinuity model for brit-
tle fracture,Int. J. Solids Struct., (2001) 38: 897−913.


	Introduction
	Post-bifurcation model
	Modified AES implementation
	Summary
	Acknowledgements

