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EXTENDED ABSTRACT 
 

Theory of dynamic fragmentation is still under development due to a wide range of applications from 
the destruction of armor and fracture of oil shale  up  to the formation of galaxies in the Universe.   Dynamic 
fragmentation of brittle solids is basically influenced by a random flaw nucleation within the body, growth of 
fracture surfaces, and loading conditions or energy available to drive the fractures. Our efforts to explain 
fragmentation due to dynamic fracture have focused on consideration of the inherent or induced flaws and its 
interrelations with the loading conditions, rather than the flaw structure characterization and consider the 
relationship between statistic and dynamic aspects of the phenomenon and especially the underlying 
thermodynamic principle appear to play a significant role.  In spite of the fact that the famous Griffith 
criterion based on energy balance does establish the fundamental relationship between energy and flaw size 
under static loading conditions, there was no conclusive relationships between energy and dynamic 
fragmentation. 

 
 In this communication, we examine two models of dynamic fragmentation (DF) we have proposed 

previously and make a comparison  with  experimental  data  and  computer  simulations.  
 
The prominent concept based on a description of the energies governing the fragmentation process was 

proposed by D. Grady [1] in 1982.  He derived a simple model of the dynamic fragmentation process in terms 
of the total free energy of the resulting fragments in an equilibrium configuration.  The free energy was taken 
to be the sum of fragment surface energy, which is created during the formation of new fragment surface 
area, and a local kinetic energy, which measures the intensity of expansion of the body and is responsible for 
driving the fragmentation process.  

     
The mean fragment size is obtained by minimizing the free-energy density F with respect to the acquired 

surface area per unit volume.  The fundamental assumption is made that the fragmentation occurs in such a 
way as to minimize the free energy of the system.  A crucial point was the recognition that the total kinetic 
energy of the body is not available for fragmentation.  Only that fraction that is relative to the center of mass 
can participate in the breakage, while the remainder must continue to reside in the rigid-body flight of 
fragments.  Although good qualitative agreement was obtained with high-rate deformation experiments on 
such diverse materials as oil shale and steel, in the lower strain rate region the model provides too large 
fragmentation size.  

 
In our first publication [2] the approach to model dynamic fragmentation based on energy balance was 
developed.  It was done by addition of the strain energy term to the energy balance of the fragment isotropic 
expansion for three-dimensional liquid or solid. This modest reformulation and a simple extension of Grady’s 
model exhibits the effect of both the elastic energy   of the fragment and the local kinetic energy   which 
contribute to the creation of a fragment 

     
The energy balance is: 
     

    Κav+∆F-γA = 0 ∆
 
 
where:   
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are the potential, kinetic and the surface energy per unit area of new fracture surface, respectively.  K is 
the bulk modulus,   ε  is the strain rate, and t is the time at which the stress  σ  reaches the critical value.     

   
Based on the overall energy balance the equation for fragment size a is obtained in [2] as 

023 =−+ βαaa
 
Here:           
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The solution of equation (1) is given in [2] and the predictions for the fragment size are shown in Fig. 1 
for dense aluminum and in Fig.2 for ceramics. This formula holds for three-dimensional fragment. The 
one-dimensional  counterpart was given in Ref. 6 where the corresponding numerical computations were 
presented as well. 
 
 
This model allows one to evaluate an average fragment size for brittle materials with low fracture 
toughness and a relatively high fracture-initiation stress.   
 
Recent experimental observations [5] and numerical simulations [6],[7] show that this model, or rather 
the one-dimensional version of it, leads to estimates of fragment size which are in the same order of 
magnitude than those calculated (in a very wide strain rate region) and measured (in a shorter region). 
Basically, size predictions based on [2] more consistent than Grady’s predictions for low and moderate 
strain rates, however, in general they still overestimate fragment dimensions. It is clear that 
fragmentation under quasi-static loading is controlled entirely by the balance between potential and 
surface energy, in accordance with the theory originally advanced by Griffith [3]. One of the 
explanations for this inconsistency might be that mutual kinetic-potential energy transformations typical 
for dynamic processes were ignored in our first approach.  On the other hand, this approach as well as 
Grady’s one is based on energy densities consideration and does not contain a flow size. It seams that 
the model describes pulverization of liquids or comminution of solids rather than fragmentation or 

isintegration d
  
 In our second model  [4] we incorporated FM formalism in evaluation strain energy release during fragmentation. 
The particular mechanism of material disassembling which includes a dynamic interaction of expanding elastic 
medium with propagating cracks was considered. In particular, we assume also homogeneous dilatation in which 
no fragmentation occurs until a critical stress, is attained.  Crack nuclei are assumed to be homogeneously 
distributed within the body and, after initiation, the cracks propagate without branching, rotation, kinking, so that 
the crack length, l, is the only parameter characterizing propagation (and, eventually, fragment size).  We 
specifically exclude any cracks that form by wave-front coalescence. 
 
We also made certain assumptions for simplicity that the ratio of a fragment size to a crack length is 
equal to one and penny-shaped crack geometry, although, this is by no means required. 
At the beginning we apply again the overall energy balance for fragment size, However, in order to 
calculate the kinetic and potential energy we employ now LEFM theory. Indeed, change in the total 
mechanical (kinetic and potential) energy  W, due to crack growth can be determined as  
 
The energy release per unit crack area for (opening mode cracks) is 
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Where     GI
(dyn) = gGI

(stat)   is the  energy release rate for a penny-shaped crack of radius  l , and 
g(v, l) is the so-called velocity factor, which accounts for dynamic effects.  It has been found that g is 
only a weak function of Poisson’s ratio and that, to good approximation  
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where  C  is the Rayleigh wave speed . From the corresponding energy release rate we obtain now 
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where  ν  is Poisson’s ratio, E is Young’s modulus. 
 
Substituting these equations into the energy balance we obtain  for the constant crack velocity    
assuming that only half the energy per broken bond at the surface is associated with the given fragment 
and that a homogenous dilatation of the medium leads to an increase of the stress during the process of 
crack growth: 
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The only real solution of this equation is obtained in a closed form similar to that in  [4].  We omit here 
the exact algebraic expression for and, instead, present a numerical solution to it in Fig.1.  
         
A large amount of energy is imparted to the body during expansion. The body  is not in a state of 

thermodynamic equilibrium, but tends to reach a state of equilibrium by breaking down. The entropy of 
the system is increasing and the fragmentation of the body is assumed to occur under an isothermal 
condition. Energy conservation requires that the total kinetic and potential energy release associated 
with crack propagation is spent partially on the formation of new surface and is partially dissipated: 
           
     
∆W – (∆Κav+∆F) = γA+DISS.; ∆F – ∆W = ∆Π , 
 

where  DISS = - (∆Κav+∆Π +γA) is the dissipation. The fundamental thermodynamic assumption is 
then made that the fragmentation process occurs with minimal dissipation, i.e., 
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Upon   substitution  of energy terms  into  this  equation  it can then be shown to yield the basic equation 

obtained in [4]: 
 
 

 The only real solution of this equation is given in [4] as well. The numerical results for the ceramics are 
represented in Fig.2.  

022 23 =−++ βαα lll

 
The LEFM approach permits a unification of previous results, yielding Griffith’ solution in the low 

strain-rate limit and Grady’s solution at high strain-rates. We also proposed an extreme energy dissipation 
principle for evaluation of an average fragment size. This approach presents fragmentation as multiple 
Griffith’ type cracking and predicts the average fragment size at low strain rate to follow from the Griffith 
condition for brittle fracture, whereas the Grady solution for fluid fragmentation is recovered at a high strain 
rate.   The second model is based on Fracture Mechanics concepts and the assumption that the fragmentation 
results from multiple cracking. A version of the second law of thermodynamics in the form of extreme 
dissipation principle has been proposed for evaluation of an average fragment size that led to more adequate 
treatment of the total energy release rate due to fragmentation. The treatment here does not distinguish or 
separate between the kinetic and potential energy while in the first model we accounted for both explicitly. 
This approach unifies both Grady’s and our fragmentation models. It presents fragmentation as Griffith’ type 
multiple cracking and it brings prediction of the fragment size at low or zero-strain rate limit into line with 
the corresponding Griffith’s crack size. At the high strain rate limit the Grady solution for fluid is also 
recovered although in the intermediate strain rate region the fragment size predicted by this FM model 
significantly depart from Grady’s solution and it is smaller than that is in our first model.  

 
Drugan [5] proposed mechanical-based models of fragmentation accounting for the actual time-varying 

dynamic deformation that occurs prior to fragmentation unset.  Fig. 1 compares the predictions of  four 
models: the Grady,  Glenn and Chudnovsky (G-C), Glenn, Gommerstadt and Chudnovsky (G-G-C), and the 
Drugan model (that is assuming initially unflawed material) and the Miller et al. finite element simulations 
for dense alumina.  The results show that the predictions of the two models, G-C and Drugan, tend to 
converge to Grady’s solution at extremely high strain rates. The predictions of the  G-G-C model, however, 
approaching the  same 2/3 Grady’s slope rather than his asymptote itself. At the quasi-static limit the 
predictions should correspond to the Griffith solution. At the low strain rates the G-G-C solution reduces to 
it.  However,  the G-G-C curve starting, for instance, with the same quasi-static fragment size as Drugan’s 
curve appears to bend at lower strain rates than all the other curves.  This behavior is supported by 
experimental evidence [3 ], though the data are yet limited  to small group of materials.   

 
   The dynamic fragmentation of a recently developed hot-pressed silicon carbide, SiC-N, has been studied 
experimentally by Wang and Ramesh [5 ] using a modified Kolsky bar technique, together with a servo-
controlled hydraulic test machine.  High-speed photography was employed to observe and characterize in 
real-time the evolution of the failure mode and fragmentation during the test. The effect of loading rate for 
uniaxial loading condition has been measured.  It is confirmed that the inertia effect is primarily responsible 
for the rate effect in the high loading rate regime while subcritical crack growth dominates the effect of 
loading rate for the low strain rates.  As we can see on Fig. 2, the Glenn-Chudnovsky model (as well as 
Drugan’s model would demonstrate) exhibits a transition from the high rate-sensitive area to the insensitive 
area transitional loading strain rate of around 100000  1/5 , however, the experimental results illustrate that 
the transitional point is located at around 1000 1/ 5, being close to the transition rate of the compressive 



strength.  Similar observation agrees also with experimental results on sintered SiC [5].   Prior to this 
transition rate, the experimental results indicate a moderate rate effect in the corresponding intermediate 
range while the Glenn-Chudnovsky (and the Drugan’s ) model exhibits a relatively flat response.  
 

The experimental results [5] on fragmentation size presented on Fig. 2 obviously fall within the 
prediction ranges of the upper and lower bounds of Glenn-Gommerstadt-Chudnovsky (G-G-C) model, 
approaching the upper bound more apparent when the stress rate is low and the lower bound when the strain 
rate is of several hundreds of 1/5. The upper bound was calculated based on maximal possible crack speed for 
this ceramic material, while the lower bound is computed based on minimal crack speeds of the order of 
1/1000 of Rayleigh velocity. The size of fragments in the experiment was determined from the length data of 
the fragment and the width data of Wang and Ramesh [5] based on fragment volume equivalency. 

 
According to these experimental results, the refined G-G-C model offers more realistic analysis of 

fragmentation process and the regime of validity of the other models is rather restricted.   
 
Both our models result in estimation of fragment size of the same order of magnitude as observed and 

calculated by numerical simulations of DF. Further extension of the described approach that includes 
micromechanical modeling of continuum damage is proposed in this communication. The damage 
contributes to DF by affecting the rigidity, strength, and toughness of the fragmenting media. Thus, a refined 
FM based model serves for a better understanding of fragmentation processes and more adequate prediction 
of the outcome of fragmentation.  Application of the above approach in modeling of quasi-static 
fragmentation resulting from phase and chemical transformation is also discussed. 
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SiC-N

1.E-03

1.E-02

1.E-01

1.E+00

1.E-05 1.E-02 1.E+01 1.E+04 1.E+07

Strain Rate,     (1/s)

Fr
ag

m
en

t S
iz

e,
 a

 (m
m

)

ε•

Low bound of 
G-G-C(1986)

G-C
(1986)Upper bound

of G-G-C(1986)

Grady
(1982)

Experimental
data

Fig. 2 

Al

1.E-03

1.E-02

1.E-01

1.E+00

1.E+02 1.E+04 1.E+06 1.E+08

Strain Rate,     (1/s)

Fr
ag

m
en

t S
iz

e,
 a

 (m
m

)

M-F-N
(1999)

G-G-C(1986)

G-C(1986)
Grady(1982)

ε•



 
 
 
 
 
 
 
 
 
 
 
 
  
  
 


	B. Gommerstadt ¹ and A. Chudnovsky ²
	References


