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ABSTRACT 

Legendre polynomials of second and higher orders have been widely used to describe residual normal stresses because of their 
unique properties that satisfy the force and moment equilibrium conditions. Unlike residual normal stresses, an expression for the 
shear stresses needs to satisfy the stress-free surface condition and the force equilibrium condition only. In this paper a general 
expression is derived for residual shear stresses. This allows an arbitrary shear residual stress to be presented explicitly in terms 
of polynomials, which is useful for both computation of KII due to residual shear stresses and measurement of shear stress 
through the thickness. 

 
1 INTRODUCTION 

To calculate stress intensity factors due to residual stresses, it is necessary to ensure that the stress used in 
computation satisfies equilibrium conditions and boundary conditions. In this case Legendre polynomials of orders 2 
and higher are often used for residual normal stresses. For mode II loading it is desirable to have a similar 
polynomial series for residual shear stresses. In this paper, we demonstrate that a complete set of orthogonal 
functions from the family of Jacobi polynomials satisfies the equilibrium condition and the boundary conditions for 
residual shear stresses. In the second part of the paper, a newly developed method based on FEM for KI is extended 
to compute KII due to residual shear stresses. After a brief description of the approach, the analysis for mode II 
loading is presented. Results for KII due to residual shear stresses are then obtained.  
   

2 A GENERAL EXPRESSION FOR RESIDUAL SHEAR STRESSES 
When computing stress intensity factors, the stresses are usually expressed in terms of a polynomial. For residual 
normal stresses, Legendre polynomials of second or higher orders have been used to approximate an arbitrary 
residual stress field through the thickness because each term of the polynomials satisfies the force and moment 
equilibrium condition. However, to authors’ knowledge such an expression has not yet been presented for residual 
shear stress. In the first part of the presentation a general expression for shear stresses through the thickness will be 
derived. 
Consider a plate of thickness t with shear stress τxy along the x-direction, as shown in Fig. 1. To simplify the 
derivation that follows, we take the origin at the centerline of the plate and normalize the thickness by t/2. Since the 
shear stress always acts tangential to the surface, it must vanish at free surface, x = -1 and x = 1. The stress free 
boundary conditions at x = -1 and 1 suggest that τxy(x) may be expressed as 
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where J(x) is a function to be determined. Since the share stress must satisfy the force equilibrium condition 
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J(x) clearly can be constructed by a set of orthogonal functions with a weight function equal to (1-x)(1+x). In fact, 
J(x) can be shown to belong to the family of Jacobi polynomials [1], which also include the Legendre polynomials. 
That is, 
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In practice, the computation of the nth order polynomial Jn is more conveniently carried out by using the recurrence 
relation 
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Figure 2 shows the variations of τxy(x) for the first six terms of the polynomial series. It is seen that for J0 = 1, the 
shear stress corresponds to a parabolic distribution produce by shear loads acting at ends of the plate. For Ji with i > 
0, the resultant force over the thickness is always zero. It is noticed that Ji consist of a complete set of polynomials. 
Thus, an arbitrary shear stress may be expressed as 
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where βi are amplitude coefficients. From eqn (5) a residual shear stress can be obtained when the first term (i = 0) 
is omitted. 
 

3 COMPUTATION OF STRESS INTENSITY FACTOR DUE TO SHEAR STRESSES 
A newly developed method [2] based on FEM for KI is extended to compute KII due to a shear stress. Consider the 
configuration shown in Fig. 3. The displacement, u(a,S), due to a crack of size a in the x-direction at a location S can 
be obtained by introducing a virtual force Q at S in the direction of u(a,S). Following the approach used for KI, we 
find an expression for mode II loading as 
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in which uq(a,S) is the displacement in x-direction produced by the virtual force Q. The differentiation in eqn (6) 
may be computed using the Simpson’s rule, i.e. 
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Results of KII are then obtained for shear stresses given in the form of eqn (5) using a finite element mesh shown in 
Fig. 4. 
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Figure 1: An edge-cracked plate subjected shear stress on the faces of the crack. 
 
 
 

 
 
 

 
 
 

Figure 2: Plots of the first six terms of (1+x)(1-x) Ji(x) 



 
 
 

Figure 3: Computation of KII using the displacements due to the shear stress on the crack faces and the virtual forces 
at the locations of the displacements. 

 
 
 

 
 
 
 

Figure 4: Finite element mesh for an edge-cracked plate with evenly spaced increments. 


	ABSTRACT
	2 A GENERAL EXPRESSION FOR RESIDUAL SHEAR STRESSES

	3 COMPUTATION OF STRESS INTENSITY FACTOR DUE TO SHEAR STRESSES

