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ABSTRACT 

Functionally Graded materials (FGMs) have been developed as super-resistant materials for 
propulsion systems and airframe of space shuttles in order to decrease thermal stresses and to 
increase the effect of protection from heat. It has been experimentally observed that crack in 
FGMs is the most common failure mode of a metal-ceramic FGM when it is subjected to some 
dangerous loads such as a thermal shock or mechanical shock. Therefore, it is very important to 
consider the thermally and mechanical induced fracture behaviors of FGMs. In this paper, a new 
multi-layered model for fracture analysis of functionally graded materials with arbitrarily varying 
elastic moduli under plane deformation has been developed. In this model, the FGM is divided 
into several sub-layers and in each sub-layer the reciprocal of the shear modulus is assumed to be a 
linear function of the depth while the poisson’s ratio is assumed to be a constant. With this new 
model, a FGM strip containing a Griffith crack under in-plane mechanical loads is investigated. 
Employment of transfer matrix method and Fourier integral transform technique reduces the 
problem to a system of Cauchy singular integral equations which are solved numerically. Stress 
intensity factors of a Griffith crack of a FGM strip are then obtained. 

  
1 INTRODUCTION 

With the increasing use of functionally graded materials (FGMs) in modern technology, fracture 
analysis of them has been of growing interest to both scholars and engineers. In this process, the 
non-homogeneities of such materials should be taken into account. However, due to the 
mathematical difficulties arising from the fact that the material properties of FGMs vary in space, 
most of the current researches on the fracture analysis have been confined to some special cases. 
Among them Erdogan and co-workers were the first to use the model of exponential function to 
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simulate the shear modulus and have investigated a series of crack problems of non-homogeneous 
materials (Delale and Erdogan [1, 2], Erdogan and Ozturks [3]). This model then was widely 
adopted to study the fracture problems of FGMs as coating or interfacial layers (Jin and Batra [4]; 
Chen and Erdogan [5]; Kadioğlu et al. [6]; Choi et al. [7]). Ergüven and Gross [8] employed the 
perturbation approach to study the crack problem of non-homogeneous materials with properties 
of slight variation. Recently Wang et al. [9] used a piecewise multi-layered model to study the 
fracture behavior of FGMs with arbitrarily varying properties. In this model, constant shear 
modulus in each sub-layer is assumed. This implies that the material properties involve 
discontinuities at the sub-interface. To overcome this disadvantages, Huang and Wang [10,11] 
recently suggested a new multi-layered model for the static and dynamic fracture analysis of 
FGMs with properties varying arbitrarily under the anti-plane and plane deformation. Based on the 
fact that an arbitrarily curve can be approached by a series continuous but piecewise linear curves, 
the FGMs are modeled as a multi-layered medium with elastic moduli varying linearly in each 
sub-layer and continuous on the sub-interfaces. But many difficult mathematic problems are met 
with this model to study the fracture problems of FGMs. To overcome the mathematic difficulties, 
we suggest another linear model in which the FGMs are modeled as a multi-layered medium with 
the reciprocal of elastic moduli varying linearly in each sub-layer and continuous on the 
sub-interfaces. Using this model a FGMs strip containing a Griffith crack was studied. 

  
2 BASIC EQUATION OF THE PROBLEM 

 
2.1 The new linear multi-layered model for fracture analysis of FGMs 
Consider a FGM strip of thickness . A through crack of length  lies parallel to the 

boundary of the strip and the strip is loaded at the crack surface, see Figure 1. Generally the shear 
modulus 

0h c2

)( yµ may be described by an arbitrary continuous function of  with boundary values y

00 )( µµ =h , . Wu and Erdogan [12] have shown that the influence of the variation in 

Poison’s ratio on stress intensity factors is rather insignificant. Therefore, as they did, we assume 
the Poison’s ratio 
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ν  is constant in the strip. Considering the fact that an arbitrary curve can be 
approximated by a series of continuous but piecewise linear curves, we develop a new 
multi-layered model as shown in Fig. 1.  In this model, the functionally graded strip is divided 
into N sub-layers with the crack on the th sub-interface ( may be any integer between 1 and 

). The reciprocal of shear modulus of the strip varies linearly in each sub-layer and is 
continuous at the sub-interfaces, i.e., 
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Figure 1: The new linear multi-layered model for the FGMs strip 
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where jµ  is equal to the real value of the shear modulus at the sub-interface, , i.e., jhy =

jµ = )()( jjj hh µµ =  which leads to  
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2.2 Transfer matrix and dual integral equation 
Consider the state of the plane strain deformation. The original problem may be viewed as the 
superposition of the following two sub-problems: (I) the functionally graded strip free of cracks is 
subjected to loads on its boundary, inducing shear and tensile tractions )(1 xσ and )(2 xσ on the 
crack plane; (II) the crack surface is loaded under )(1 xσ− and )(2 xσ−  with the boundary free. 

Since problem (I) contributes nothing to the singular stress fields at the crack tips, we will only 
pay attention to problem (II) treating )(1 xσ− and )(2 xσ− as known functions. The governing 

equation for the strip can be expressed in terms of Airy stress function as 
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Eqn (3) can be solved by using Fourier integral transform and finally, we obtain the transform Airy 
stress function in each sub-layer as 
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The displacement and stress component can be consequently given as 

{ } [ ]{ } [ ]{ }jjjjjjjj AyTyTyTyTAyTS )(),(),(),()( 4321==                 (5) 

where { } [ ]Tyyjxyjyjxjj uuS σσ ~,~,~,~= ， { } [ ]Tjjjjj AAAAA 4321 ,,,=  and 

             [ ]  [ T
jljljljlj yTyTyTyTyT )(),(),(),()( 4321= ]

with 

jlj
jlj

jl si
dy

d
s

i
yT φµν

φµ
−−= 2

2

1 )( ,   
dy

d
isy jl

jlT
φ

−=)(3 ,  4,3,2,1=l  

jlj
jl

j
jljjlj

jl dy
d

dy

d

sdy

d

s
yT φµν

φ
νµ

φµφµ
′++−

′
+= )2()( 2

2

23

3

22 , .  jljl sT φ24 −=

Making use of the continuity of stresses and displacements at the sub-interface except at the crack 
surface where the displacement involve jumps, one may have 
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in which kjδ is the Kronecker delta and [ ]Tykxkk uuS 0,0,~,~ ∆∆=∆ with xku∆ and  being the 

Fourier transforms of the jumps of the displacements across the crack faces. 
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   Eqn (6) in essence is a recurrence relation that in combination of Eqn (5) can yield { }jA  in 

terms of{  }kS∆

{ } [ ] [ ] { }njkjkj SkjHKLA ∆−−+= ))(1((                       (7) 

where is the heaviside function, and  )(⋅H
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   Inserting Eqn (7) into Eqn (5) and applying inverse Fourier transform, at the same time we use 
the boundary conditions at the crack faces and the single-valued condition for the displacement 
components, we obtain the dual integral equation for the present problem:  
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2.3 Cauchy singular integral equation 
Defining dislocation density functions as  
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Eqn (8) and (9) can be written as  
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    Considering the asymptotic behavior of functions and following methods developed by 
Erdogan [13], Eqn (11) and (12) can be numerically solved. We can obtain the stress intensity 
factors at the crack tips. 
 

3 CONCLUSIONS 
In this paper, we suggested a new linear multi-layered model for the fracture analysis of FGMs. In 
this model the FGMs are modeled as a multi-layered medium with the reciprocal of elastic moduli 
varying linearly in each sub-layer and continuous on the sub-interfaces. Using this model, a FGM 



strip containing a thorough crack was investigated, and the stress intensity factor was obtained.  
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