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ABSTRACT 
We present a numerical model for intergranular creep fracture of a single notched specimen under tensile 
loading. The model accounts for the nucleation and growth of grain boundary cavities, their coalescence to 
microcracks and the formation of macroscopic cracks until the specimen breaks. Typical results are presented 
for ductile and for brittle crack growth, and their sensitivity to grain-to-grain fluctuations in properties is 
briefly presented. The effect of boundary conditions on fracture path is highlighted. 

 
1  INTRODUCTION 

Crack growth in heterogeneous materials is often a very complex process, featuring many different 
physical mechanisms. The fracture mechanisms in different material classes have their own time-
scale and stress dependence, leading to a stochastic and material-specific appearance of the 
fracture surface. Crack surfaces often have a complex meandering structure with a large number of 
small crack branches that accompany growth of the main crack. These surfaces appear to be fractal 
[1] in many cases [2]. Surprisingly, the parameter that describes the degree of fractality is very 
similar for a wide range of material systems, even when they have distinctly different fracture 
mechanisms [1,2]. The current work aims at elucidating this by studying the conditions that 
determine the appearance of the fracture surface in creeping polycrystalline materials. 

Creep fracture in polycrystalline materials starts by the nucleation and growth of grain 
boundary cavities, which ultimately coalesce to form a grain boundary microcrack. Crack advance 
occurs when these microcracks link up. The damage process entails various competing 
mechanisms, including the competition between diffusion and creep, grain boundary sliding and 
the (poorly understood) stress-state dependence of cavity nucleation. Recently, a numerical multi-
grain model has been developed that takes into account these mechanisms, enabling the simulation 
of macroscopic creep crack growth in a polycrystalline aggregate, assuming small-scale damage 
conditions [3,4]. In these studies, however, no crack meandering was observed. In the current 
analysis, we use the same constitutive equations describing creep deformation and damage 
development as in [3,4], but relax the small-scale damage assumption by explicitly modelling the 
geometry of the specimen. We consider a single-edge notched specimen and investigate the effect 
of a number of material and loading parameters on the occurrence of crack branching and 
meandering. 

 
2  MODEL DESCRIPTION 

A single-edge notched specimen is loaded by a uniform tensile stress ∞σ  (see Fig. 1a). The 
specimen dimensions are specified by its height ,dH 50=  width dW 66=  and crack length 

da 33=  (giving 50.Wa = ), where Rd 3=  is the grain size (see Fig. 1b). The specimen is 
discretized by continuum elements in the far-field region, which is connected to a process-window 
near the crack-tip in which the polycrystalline microstructure is represented by grain elements, 
connected by grain boundary elements (see Fig. 1b). The hexagonal grain elements account for 
elasticity and creep inside the grains and the grain boundary elements account for cavitation and 
grain boundary sliding. For a detailed discussion on the numerical implementation and constitutive 



equations governing the deformation and damage mechanisms, the reader is referred to [3]. Here 
only a summary is given. 
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FIGURE 1. a) Specimen geometry, b) Finite element mesh, with separate grains modeled inside 
the process zone. 

 
 

Creep deformation of the grains is governed by the Norton creep law 
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where eε�  and eσ  are the effective strain rate and stress, nB 00 σε�= is the creep parameter, n  the 
creep exponent,  and 0ε�  and 0σ  reference strain rate and stress quantities. Cavity nucleation is 
described by  
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where N is the cavity density, nF  a material parameter, 0Σ  a normalization factor and nσ  the 
normal facet stress. Cavity growth is governed by diffusion and creep deformation, whose relative 
contribution can be described by the length scale 

                                                                   [ ] ,EDL
31

�Σ=                      (3) 
where D  is the diffusion coefficient, 11 −

∞ −= )Wa(σΣ  the net-section stress and nBE Σ=�  the 
net-section creep rate, in accordance with eq. (1). 
 

 



 
 

3  RESULTS AND DISCUSSION 
The material parameters are chosen as follows. The applied stress is specified as 41061 −

∞ ×= .Eσ  
where E  is Young’s modulus. The time is normalized by the creep reference time E/tR

�1= . The 
reference stress 0Σ  in (2) is chosen to be equal to Σ  and the creep exponent 5=n . We consider 
a brittle case, where the diffusion coefficient specified by 0420.dL =  is relatively large, and a 
more ductile case for which 190.dL = . The nucleation parameter nF  in (2) is chosen such that 
the size of the damage zone (number of nucleated facets) at the moment the first microcrack 
appears is the same for the ductile and brittle case, resulting in 42 10240 ×= .dFn  and 

32 10210 ×= .dFn  for the ductile and brittle case, respectively. To introduce randomness in the 
simulations, nF  and B  are chosen at random from a Gaussian distribution; for details see [3,4].  

The initiation of the crack in the brittle case is accompanied by a large damage zone that 
gradually decreases in later stages of the fracture process (Figs. 2a-b). This is caused by bending 
during the later stages of crack growth which is allowed by the stress controlled boundary 
conditions. One dominant crack forms having a surface that contains a large number of branches 
with a characteristic size much smaller than the crack length. In the ductile case, with the same 
initial conditions, branching starts right from the beginning, and fracture is accompanied by a 
competition of different branches that highly depends on the randomness in the material properties 
(Figs. 2c-d).  

To emphasize this branching behaviour Figs. 3a and 3c show the topology of the “main crack” 
plotted on the reference configuration for the ductile and brittle case, respectively. These topology 
plots have been created by marking the fractured grain boundaries that belong to the “main crack” 
defined as the percolation of neighboring microcracks connected to each other, starting form the 
initial crack tip. Figure 3b shows the crack mouth opening at the left side of the specimen versus 
crack length, being the projection of the crack topology on the horizontal axis. The beginning of 
the brittle fracture (Fig. 3b) is characterized by fast growth of the crack with relatively small crack 
opening displacement, while during  ductile fracture branching occurs, which leads to a relatively 
large opening displacement for a given crack length even at the beginning of the fracture process. 
Further crack growth develops with approximately the same rate for the brittle and ductile case. 
This is probably a result of the fact that after a certain amount of crack advance and opening 
further crack growth is controlled by the specimen rotation. 

The effect of randomness was introduced in the current model by using a Gaussian distribution 
for the creep parameter B in (1) and the nucleation factor nF  in (2). To investigate the effect of 
the specific random distribution on the overall crack growth behaviour, we performed two 
additional calculations with a different random realization. The topologies are shown in Figs. 4a 
and 4b for the brittle case and in Figs. 4c and 4d for the ductile case, still showing one dominant 
crack and branched crack growth, respectively. The influence of  the “randomness” on the overall 
crack growth behaviour for the ductile fracture is somewhat bigger than in the brittle case, but for 
both cases the scatter in crack opening and length remains small (see Fig. 4e). 
 

4  CONCLUDING REMARKS 
Modeling a full specimen is a significant advancement over small-scale damage studies [4] in that 
they allow for crack growth until the specimen breaks into two pieces. Also, it breaks the 
symmetry in the small-scale damage problem which stabilizes geometrically-induced crack 
growth. Yet, the results presented here show that the damage pattern and final fracture path depend 
quite sensitively on the choice of material parameters. Although the model is deterministic – based 



on physically motivated models of the fracture mechanisms, the final crack path is complex, 
involving crack branching and meandering. The preliminary studies reported here suggest that the 
details of the crack path are controlled by statistical fluctuations of the material properties, while 
overall characteristics such as crack length and opening distance are fairly insensitive. Although 
these features need to be studied to greater depth, it seems fair to conclude that this kind of 
modeling promises to pave the way to exploring statistical properties of fracture surfaces and to 
relate them to experimental findings of fractality. 
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FIGURE 2. Snapshots during the crack growth for traction controlled boundary conditions: 
a) Brittle fracture with ,.dL 190=  ,.dF n

42 10240 ×= 210815 −×= .tt ref ; 
b) Brittle fracture with ,.dL 190=  ,.dF n

42 10240 ×=  210746 −×= .tt ref ; 
c) Ductile fracture with  ,.dL 0420=  ,.dFn

32 10210 ×= 791.tt ref = ; 
d) Ductile fracture with  ,.dL 0420=  ,.dFn

32 10210 ×= 572.tt ref = ; 
The thickness of plotted grain boundaries scales with the amount of cavitation damage. 
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FIGURE 3. a) Crack topology for  ductile fracture with  ,.dL 0420= 32 10210 ×= .dFn ; 
b) Correlation between brittle and ductile crack length against crack opening c) Crack topology for 

brittle fracture with ,.dL 190= 42 10240 ×= .dFn . 
 
 
 
 
 
 
 
 
 
 



a) 210666 −×= .tt ref  b) 210746 −×= .tt ref  
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FIGURE 4.  Effect of different random distributions of creep parameter B  and nucleated 
parameter nF : (a,b) Crack topology for brittle fracture with ,.dL 190= 42 10240 ×= .dF n ; (c,d) 
Crack topology for ductile fracture with  ,.dL 0420= 32 10210 ×= .dFn ; e) Correlation between 
brittle and ductile crack length against crack opening for the different random distributions (a-d). 
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