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ABSTRACT 

Eigenstrains, thermal strains and residual stresses can strongly influence the failure behavior of materials and 
structural components. This paper will develop material forces models for evaluating their influence on the crack 
driving force in elastic and elastic-plastic materials.  

 
1 INTRODUCTION 

The improved fracture toughness of zirconia-toughened ceramics is due to eigenstrains resulting from a 
crack tip induced phase transformation. Other material systems where eigenstrains play an important 
role include TRIP steels, TiAl alloys, shape-memory alloys and martensites. Materials and structural 
components are subject to considerable temperature fluctuations both during fabrication processes and 
under certain working conditions, hence thermal strains become important whenever components have 
inhomogeneous thermal properties. Residual stresses are intentionally introduced by specialized 
treatments like shot peening for enhancing fracture properties of components. Also, eigenstrains and 
thermal strains are typically accompanied by residual stresses, which in turn will influence cracks.   

The material forces approach has seen renewed interest in the past decade (see Simha et al. [1, 2] 
and references there). Advances include theoretical developments (Gurtin [3], Maugin [4], Kienzler & 
Hermann [5]) and formulation of novel computational schemes (Steinmann [6], Mueller & Maugin [7], 
Mueller et al. [8]). Our recent efforts have been focused on understanding the influences of 
inhomogeneous material properties on crack initiation and growth; material force models and 
computational schemes were developed, and then applied to comprehensively catalogue inhomogeneity 
effects in elastic and elastic-plastic materials (Simha et al. [1, 2], Kolednik et al. [9, 10]). There is a 
strong link between inhomogeneous material properties and the topics – eigenstrains, thermal strains 
and residual stresses – considered here. For instance, a mismatch in thermal properties at a bimaterial 
interface will result in residual stresses, which in turn can influence cracks. So by building on the 
theoretical developments in Simha et al. [1,2], this paper will examine the effects of eigenstrains, 
thermal strains and residual stresses on the crack driving force in elastic as well as elastic-plastic 
materials. 

 
2  THEORETICAL BACKGROUND 

The notion of crack tip shielding or anti-shielding is very useful in understanding the influences of 
factors such as inhomogeneous material properties, eigenstrains, continuum damage and plastic 
deformations on crack initiation and growth. The idea is that these factors either shield the crack tip 
from the nominally applied far-field crack driving force Jfar, so the effective near-tip crack driving 
force Jtip is smaller than Jfar or anti-shield by enhancing the effect of the applied Jfar, so Jtip is larger than 
Jfar.  

The primary result we need is the relation between the effective crack driving force Jtip and the 
nominally applied far-field driving force Jfar. As shown in Simha et al. [1, 2] 
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where Jtip and Jfar are obtained by evaluating the standard J-integral on contours close to the crack tip 
and in the far field (Fig. 1a); we call C the material term, it quantifies the crack tip shielding or anti-
shielding, and is given by 
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here φ is the stored energy density (Helmholtz potential), F is the deformation gradient, S is the Piola-
Kirchhoff stress, e is the direction of crack growth, ∇ is the Lagrangian derivative, the region D refers 
to the area between the contours used to evaluate the near-tip and far-field integrals (Fig. 1), there are 
Σi, i=1,2 ..k, sharp interfaces in the region D, ni is the unit normal to interface Σi and [[b]] denotes the 
jump across an interface of a quantity b, while <b> denotes the average. The area integral in eqn (2) is 
taken only over the areas inside region D excluding the k interfaces. If the material term C is negative, 
then it shields the tip from the applied far-field driving force, whereas if it is positive it enhances the 
applied driving force and hence results in anti-shielding. Alternately, suppose that the crack grows 
when the crack tip driving force reaches a critical value, i.e. Jtip≥Jc. Note that (1) implies that Jfar ≥ Jc - 
C. So, if C <0, then the applied driving force needs to exceed the critical value for crack growth; in 
contrast if C >0 the crack can grow even when Jfar is smaller than Jc. 

 
 

 
Figure 1. A two dimensional body containing a crack growing along direction e and a sharp interface Σ 
with unit normal n. Jtip is evaluated on contour Γtip, while Jfar is evaluated on Γfar; D is the region 
between the two contours.      

 
 

Simha et al. [1, 2] do not assume the materials to be nonlinear elastic for deriving eqns (1) and 
(2), hence these are valid for a wider class of materials. We next suppose that the stored energy density 
φ =φ (F, x) where x denotes the reference coordinate. The dependence on the deformation gradient F is 
relevant for elastic and (rate-independent) elastic-plastic materials, whereas we will show below that 
the explicit dependence on the reference coordinate can account for eigenstrains, thermal strains and 
residual stresses. For this type of stored energy, the integrand of the first integral in eqn (2) simplifies 
(Simha et al. [1]), and the material term can be written as 
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It is important to note that the derivative is with respect to the reference coordinate x and is taken while 
holding F fixed. When the body does not contain any sharp interfaces the second integral vanishes; in 
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addition, if the material is homogeneous the first integral vanishes, the material term C=0. This 
essentially recovers the path independence of the J-integral for nonlinear elasticity and deformation 
plasticity.  

Next, for the linear setting, ε denotes the linear elastic strain, the stored energy is taken to be φ =φ 
(ε, x), the Cauchy stress σ is given by σ(x)=∂φ(ε,x)/∂ε, and eqn (3) becomes      
 

[ ][ ] [ ][ ]( )∑ ∫∫
=

Σ
⋅⋅−−

∂
∂

⋅−=
k

i

i

D
dsdAC

i
1

  
)( )( enεσ

x
xε,e φφ .                 (4) 

 
In terms of Cartesian components, the material term can be written as 
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Note that the derivative in the first integral is taken in the direction of crack growth while the second 
integral contains the jump in the Eshelby tensor along the direction of crack growth.  
 

3  EIGENSTRAINS 
The total strain ε is now split into the elastic part εe and the eigenstrain ε∗. The eigenstrain is 
determined by phenomena like phase transformation and is taken to be independent of the elastic strain. 
We account for eigenstrains by taking the stored energy to be φ =φ (ε,ε∗(x)); now the dependence on 
the reference coordinate is through the eigenstrain. Then   
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Further simplifications follow if we adopt the following specific form  
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where Kijkl denotes the linear elastic moduli. These expressions are commonly used in micromechanics, 
e.g. Mura [11]. Then the derivative with respect to the eigenstrain can be calculated and eqn (6) 
becomes  
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Next, we simplify the integrand of the second integral in eqn (5). Using expressions (7), the identity 

]][[]][[]][[ babaab +=  and symmetry of the elastic moduli, a direct calculation shows that 
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Consequently, the material term due to a field of eigenstrains )(**

ppqpq xεε =  is given by  
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The first integral accounts for a smooth distribution, while the second accounts for sharp interfaces.  
 

4  THERMAL STRAINS 
Thermal strains can be treated as a special type of eigenstrain. The strain due to temperature changes 
does not have a shear component and contributes only to normal strains,   
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where α is the coefficient of thermal expansion, ∆T is the temperature change (current-initial) and δij is 
the Kronecker Delta function. Then, the material term due to thermal strains is obtained from (8) as  
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The first integral accounts for smooth inhomogeneities in the thermal coefficient, while the second 
accounts for discontinuous jumps at sharp bimaterial interfaces or phase boundaries. In general, the 
temperature field is obtained by solving a heat transfer problem, however in this context all that is 
needed are the current and initial temperatures. Also it is reasonable to assume that the temperature is 
continuous at bimaterial interfaces and phase boundaries. Temperature gradients can be present in a 
cracked body, however such gradients are Eulerian. Since the derivative in the first integral in (10) is 
Lagrangian, the derivative of temperature does not appear in eqn (10). Thus temperature gradients do 
not directly contribute to the material term. However, temperature can alter plastic parameters like the 
yield stress, and such inhomogeneities in material properties will contribute to the material term C 
(Simha et al. [1, 2]).   
 

5  RESIDUAL STRESSES 
An important aspect of eigenstrains is that they can be accompanied by residual stress fields, so we 
now discuss methods to quantify the influence of residual stresses on cracks. Since thermal strains are 
simpler to understand than eigenstrains, we use it to explain important points. First, the existence and 
magnitude of thermal strains are controlled by temperature. Second, thermal strains result in residual 
stresses only if constrained, since a homogeneous body that is unconstrained will simply undergo 
changes in dimensions freely. Finally, residual fields can exist even in the absence of externally applied 
mechanical loads.  

A simple constraint is a bimaterial interface where the material with the smaller thermal 
coefficient α will restrict the expansion of the material with higher α. Consequently, the stresses and 
strains on either sides of the interface will not vanish. The influence of such a residual field on any 
cracks in the vicinity can be estimated from the second term in eqns (3) and (4). A second example 
would be a composite containing a varying volume fraction of small second phase inclusions that have 
a thermal coefficient different from the matrix. On the macroscopic scale of the composite, the varying 
volume fraction translates to a varying effective thermal coefficient. Since each inclusion is constrained 
by the matrix, temperature changes will result in a residual stress field. The influence of such a residual 
field can be evaluated from the first term of eqns (3) and (4). The bimaterial interface example is 
examined in detail in a companion paper in these proceedings (Rakin et al. [12]). 

The general case of eigenstrains is similar to that of thermal strains with primarily one additional 
complexity. This is because the existence and magnitude of eigenstrains may also depend upon stresses 
or strains, and in general it is difficult to compute the magnitude of eigenstrains (see e.g. Fischer et al. 



[13]). However, once the eigenstrains are known, the situation is exactly like that of thermal strains – 
constraints are required to produce residual stresses and these can exist in the absence of externally 
applied mechanical loads. In the crack shielding or anti-shielding framework specified by eqns (1) and 
(2), the effects of such residual stress fields on cracks in the vicinity can only be evaluated indirectly 
through the eigenstrains. In the linear setting, the material term is obtained from eqn (8), where the first 
term corresponds to continuous distributions of eigenstrains, while the second is for jumps. 

 
6  DISCUSSION AND CONCLUSIONS 

The focus of this paper is to provide expressions to quantify the influences of eigenstrains, 
thermal strains and residual stresses on the crack driving forces. It is convenient to characterize such 
influences in terms of crack tip shielding or anti-shielding, which in turn are quantified by the material 
term C. The material term due to eigenstrains, thermal strains, residual stresses (as well as 
inhomogeneous material properties) is given in general by eqn (3) for the finite strain setting and by 
eqn (4) for the small strain setting. In this setting, the crack tip shielding and anti-shielding due to 
residual stresses are evaluated indirectly via the corresponding eigenstrains.   

The general expression (4) for the crack tip shielding or anti-shielding can be specialized to 
obtain eqn (8) for eigenstrains and eqn (10) for thermal strains. These specialized forms are especially 
useful for analytical calculations.  

In a computational framework, the material term can be evaluated by post-processing, after 
equilibrium stress and strain fields have been evaluated (Simha et al. [2]). Computational packages like 
ABAQUS (www.abaqus.com) provide standard methods to evaluate the J-integral, and in Simha et al. 
[2] we have shown that this can be adapted to accurately evaluate the surface integral in equation (4). 
However, at present, custom post-processors are required to evaluate the volume integral in eqns (4), 
(8) and (10).  Since a standard method is available to evaluate the surface integral in (4), it is simpler to 
work with this than with the specialized versions in eqns. (8) and (10) (Rakin, et al. [12]).    

Residual stresses can result in crack tip shielding or anti-shielding even in the absence of 
externally applied mechanical loads. Quantitative results are provided in a companion paper (Rakin et 
al. [12]). 

In conclusion, this paper provides a framework for evaluating the effects of eigenstrains, thermal 
strains and residual stresses. In Simha et al. [1, 2], we have recently developed robust accurate methods 
for evaluating the effects of inhomogeneous material properties. Together, these provide a 
comprehensive framework for studying and developing new methods to enhance the fracture and 
fatigue properties of materials and structural components.  
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