A VARIATIONAL APPROACH TO STRESS-INDUCED
INSTABILITIES IN HETEROEPITAXIAL GROWTH

Eric Bonnetier!, Morgan Brassel!, Antonin Chambolle? & Frangois Jouve?

ILMC-IMAG, Université J. Fourier,
B.P. 38041 Grenoble Cedex 9, France
2CMAP (CNRS UMR 7531) Ecole Polytechnique,

91128 Palaiseau Cedex, France.

ABSTRACT

We study a variational model for shape instabilities that occur in expitaxial growth of thin crystalline
films. Such instabilities (also known as Asaro—Tiller—Grinfeld instabilities) result from lattice misfits
between the film and the substrate. Equilibrium shapes of the film are defined variationally, as those
that minimize a free energy functional, which combines elastic bulk energy and surface energy. Our
model involves a scaling parameter K which multiplies the elastic bulk energy. In a 2—dimensionnal
setting, we show that when K is smaller than a critical value, films with flat free surfaces are

optimal. When K is large, however, corrugated surfaces are preferred.

1 INTRODUCTION

The shape of the free surface of a thin crystalline film growing on a susbtrate may show
island—like patterns. These result from surface diffusion of atoms on the free surface, as
film tries to relax elastic stresses that are induced by lattice mismatch with the substrate.
Experimentally, one observes that films grow flat until a critical mean thickness is reached,
after which corrugations or grooves appear. The control of such shape instabilities (also
known as Asaro—Tiller—Grinfeld [1, 6]) in the growth process of heteroepitaxial systems
(such as e.g. Si/Ge films) is a great challenge. The occurence of instabilities may or may not
be desirable. For instance, this mechanism may be used to manufacture quantum devices,
where tiny islands of a material spaced by a few hundreds nm are formed.

In most of the litterature on such instabilities (for a review see [5]) the free surface is
sought in a parametric form as a function h(z,y,?), as the solution to a PDE of the form

o? 1
V., = Da? <’yf;+ §aze(u)/p>, (1)

where V}, denotes the normal velocity of the free surface I', D is a diffusion constant, ~, the
surface tension, «, the surface curvature, and where u, e(u) and ¢ and are respectively the
elastic displacement and the (linearized) deformation and stress tensors. From the physical
point of view, this equation expresses the evolution of the surface according to a chemical
potential, sum of a (local) surface strain energy density and of a surface energy (surface
tension times the curvature of the free surface in the reference state).

Linear stability around a uniform profile has been addressed for the steady-state and
time-dependent problems in various configurations: when the film is modeled as a semi-
infinite region, when the interaction between film and substrate (rigid or non-rigid) is taken
into account. The stabilizing influence of kinetic (deposition) effects has also been studied
with this model and a similar model has been investigated in the context of alloy thin films.
[4, 5, 11] and the references therein.



At equilibrium, equation (1) reduces to a relation between the strain energy density along
the free surface and the curvature

1
K + 7 o e(u)/r = constant. (2)

We notice that the above equation is obtained under the hypothesis that the free surface
and the elastic displacement are sufficiently smooth.

Instead of secking the free surface as a solution to (2), we study a model (at the continuum
level) where the instability result from the competition between two forms of energy : surface
energy and bulk elastic energy. While surface energy promotes configurations with flat
free surfaces, an asymptotic argument by M. Grinfeld [6] shows that corrugations may be
preferable when minimizing the bulk elastic energy.

Specifically, we assume that the film can be modeled as a linear elastic material, whose
Lamé tensor is denoted by A. Equilibrium shapes are defined as minimizers of a free energy
functional F(Q,u) that depends on the domain Q occupied by the film and on the elastic
displacement u

E(Qu) = [\"/ﬂA@(u) ce(u) + L(2). (3)

The term L(2) denotes surface energy. Its precise definition is given below. The param-
eter K results from the scalings from physical dimensions and is interpreted as the mean
thickness of the film. In the minimization of the energy, admissible ’s and u’s are con-
strained to be periodic (in the directions of the plane of the substrate) to satisfy a volume
constraint and boundary conditions that reflect the interaction between film and substrate.

This note is organized as follows : in the next Section, we explain how we define surface
energy for very general surfaces, i.e., without a priorismoothness assumptions on the surface.
In particular, our formulation allows free surfaces with vertical slopes or with cracks. Section
3 concerns approximation of the free energy using a phase field description of the free surface.
In section 4, we give a stability result for flat free surfaces when the scaling parameter K is
small.

2 THE ENERGY FUNCTIONAL IN 2 DIMENSIONS

Numerical approximations to solutions to (1) have proven very unstable, as the shape of
free surfaces tend to become singular and tend to form cusps or deep grooves. In the vari-
ational context, Bonnetier et al [3] have analyzed a simplified 1-dimensionnal model where
minimizing the energy (in the large K regime) produces a vertical crack in the film. From
a mathematical point of view, these observations raise the question of the well-posedness
of the minimization of a functional of the form (3) when the surface energy L(Q2) roughly
measures the area of the free surface.

More precisely, let @ denote the x—periodic cylinder R/Z x R and QT = R/Z x (0, c0).
When the domain © of the film is smooth (i.e., Q lies between the z—axis and the graph of
a smooth non—-negative function h(z),z € (0, 1)) one may define a free energy by

E°(Q,u) = K/ Ae(u) e(u) + o HH(OQNQY) + o, HH(OQ\ QT), (4)

where ¢, and ¢, denote the surface tensions of the film and of the substrate and where H'
denotes the one-dimensional Hausdorff (surface) measure. When one tries to minimize E°



under the constraints

2] = Vo
u(z,0) = (2,0) forz e (0,1) (5)
u(l,y) — (1,0) = u(0,y) fory € (0,h(0))

it may happen that minimizing sequences (,,) converge to a domain Q. which is singular
and the energy of which cannot be computed by (4).

The remedy is to perform a relaxation, z.e., to generalize the set of admissible shapes in
order to allow shapes with cusps and vertical cracks, and to extend accordingly the definition
of the functional by computing the lower semi—continuous enveloppe of E°. In 2 dimensions,
Bonnetier and Chambolle [2] gave an explicit form of the relaxed functional when admissible
shapes are subgraphs which we recall below:

Let G denote the set of subgraphs of positive lower semi—continuous functions defined on
the torus R/Z

Qeg & Q={(x,9)eQ/ y<h(zx)},

1
h lsc., h>0, /h:VO.
0

For Q € G, let @t = QN {y > 0} and define a set X (Q2) of admissible displacement by

u€ L. (Q) elu) €L}, (Q)
X(@Q) = ( y) = (m 0) fory<0

— (z,0) is 1-z—periodic

We say that a sequence (£2,) C G converges to a set €, if the Hausdorff distance between
the complements (QF) and Q¢ tends to 0. In this topology, G is the closure of the set of
Lipschitz graphs.

To define the relaxed free energy, let Q C G. There exists 2 1.s.c. functions h and h, such
that

o

Q={(r,y) €Q, y<h(x)} Q={(x,y)€Q, y<h(x)}

For u € X(Q), we set

E(Qu) = K/QnQ+ Ae(u)(z, y):e(u)(z, y) dedy + L(Q), (6)

LQ) = oHNOQNQY) + (6. Ao )HH(OQ\ QT) + 20, Z (h(z) — h(z)). (7)

r€S?!

Notice that the last term in (7) is the contribution of vertical cracks (twice their length).
The middle term is the contribution of the parts of the substrate which are not covered by
the film. This term is proportional to the lowest surface tension o. A g, which reflects the
possible presence of a wetting layer, i.e. an infinitesimally thin layer of film.



Equilibrium shapes are defined as global minimizers of
min{E(Q,u) /QE€G, ue€X(Q), suchthat|QNQT| =V}, (8)
and we obtain the following result ([2])

Theorem 1 There exists an equilibrium state Q € G, u € X ().

3 APPROXIMATE ENERGIES AND NUMERICAL COMPUTATIONS

Since subgraphs of l.s.c. functionals are rather delicate to manipulate, we introduce phase
field approximations of the energy functional (6). From a physical point of view, this amounts
to replacing the sharp interface between the film (or the substrate) and the degenerate
phase above the film, by a diffuse interfacial zone of size &, where the density of film varies
continuously from 1 to 0 (see also Kassner and Misbah[7]). A phase function v, with value 1
in the film and 0 above it, keeps track of the geometry of the interface. The approximate
energies are defined as follows: for € > 0 let

E.(v,u) = /Q+(v(ac,y) + n.)Ae(u)(z, y)e(u)(z, y) dedy + Le(v), 9)
where
L.(v) = 2. <%/Q+ Vo(z, y)[2 dedy + %/<2+v(m,y)(1 —v(m,y))dmdy) . (10)

The Cahn-Hilliard energy L. is defined for v € H'(Q%) such that 0 < w(z,y) < 1,
dyv(z,y) < 0 ace. in QF, and v > v, on S* x {0}; and for u € H. (R x Ry;R?) such
that u(z,y) — (2,0) is 1-periodic in 2 and vanishes on R x {0}. The constant v, € (0, 1] is

given by
Ys o N\ Oy 1 O Nog T
/ VI =D dt = / Vi1 dt = = (1)
0 c o] c

[ [

If v, u do not satisfy these properties we set E, (v, u) = +00.
The functional L. is known to be an approximation, in the sense of I'-convergence of
the perimeter [9]. The following result is proven in [2]

Theorem 2 If (v.,u.) is a sequence of minimizers for E., subject to IQ+ ve (2, y)dedy = 1,
then to each limit point u of (u.) corresponds a set Q € G, such that QN Q*| =1 and

F(Q,u) = min min E(Q,ﬂ)
Qeg aex () '

From a computational point of view, the approximating energies (9) are easier to handle.
For a fixed value of €, one can write an Euler-Lagrange equation for both fields u. and
ve. We solve these equations iteratively, starting from an initial configuration. At the nth
step of the algorithm, the displacement i1s updated via the resolution of a problem of linear
elasticity of the form

div ((vn + n:)Ae(unt1)) = 0.



The marker function v. is then upated by minimizing E.(.,un4+1) using a gradient flow
method. Note that the corresponding Euler equation for v is linear:

8¢
8v = 20, <ﬂ_—2Av —1/e(1 - 2'0_)) — Ae(upy1) :e(tpgr) — A
0<wv<1, 9yv <0,

The bounds on v, and the constraint that v. should be a graph are imposed by truncation,
while the volume constraint is imposed via a Lagrange multiplier.

4 A STABILITY RESULT

In this Section, we show the following stability result

Theorem 3 There exists a constant Ko > 0 such that if 0 < K < K, the shape with flat
free surface Q = (0,1) x (0, Vo) is a global minimizer of (8).

This result shows that the variational problem (8) is consistent with the experimental
observations that instabilities only occur after the film has reached a critical thickness.
Sketch of Proof: 1. For simplicity, we assume that o5 > 0. = 1 and that Vo = 1. Let Qg
denote the domain (0, 1) x (0, 1) and let ug denote the linear displacement solution to

E(Q = inf  FE(Qo,u).
(20, o) uegl(ﬂo) (€0, )
. , . . . 4dkp
Denoting & and p the Lamé coefficients, one easily computes that E(Qq, ug) = K +1,
v T

which is smaller than 2, if K is sufficiently small. Assume that the statement of the Theorem
is false: then, a sequence of numbers K; < 1/j, of domains Q; € G and of displacements u;
could be found, such that

4K
K+ u

Kj/ﬂ Ae(uj) se(u;) + L(Q;) < K;j + 1. (12)

i
By construction of the relaxed energy, we may assume that the sets Q; are smooth. Since

|Q2;] =1 and L(Q;) < [\"j%TM + 1, Golab’s Theorem [10] implies that a subsequence (not
K+ p
relabelled) converges to some Q, € G for the topology of G, which satisfies

Q] =1 and L(Q) <1,

The isoperimetric inequality forces then Q, = Qq.

2. Given § > 0, the convergence of Q; to Qg imply that when j is sufficiently large, the free
surface 9Q; N{y > 0} lies in the set (0,1) x (1 —4,1+4), i.e., in a d—neighborhood of the flat
free surface. In particular, the term L(Q;) is then simply the length of the upper boundary
of the smooth domain ;. Using the same analysis as in Bonnetier et al. [3] (see estimate
3.3), one can easily show that

L) > (1+85)"7

where J; is the Hausdorff distance between €; and Q.



3. Since the sets Q; are smooth, the corresponding elastic energy can be estimated as in the
computations of M. Grinfeld [6]

/ Ae(uj) : E(Uj) = / Ae(ug) @ e(ug) — Rj(sf- + 0(5;_),
Q Qg

7

where R; is a positive term, bounded independently from j. It follows that

E(Qj,u;) > / Ae(ug) : e(ug) — RJ-JJ? + o(éjg) +(1+ 8532)1/2
Qo

4K
K+ pu

K; + 14874 — KjR;j) + 0(37),
which contradicts (12).

4. When K is large, one easily finds examples of corrugated surfaces with a free energy
lower than E(Qq, ug).
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