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ABSTRACT
A theoretical and computational framework for linear and non-linear fracture mechanics is presented. We use the
material forces concept as a basis for the formulation, due to the close relation between on one hand the Eshelby
energy-momentum tensor and on the other hand material defects like cracks and material inhomogeneities. By
separating the discontinuous displacement from the continuous counterpart in line with the eXtended Finite Element
Method (XFEM), we are able to formulate the weak equilibrium in two coupled problems representing the total
deformation. However, in contrast to standard XFEM, where the direct motion discontinuity is used to model the
crack, we rather formulate an inverse motion discontinuity to model crack development. The resulting formulation
thus couples the continuous direct motion to the inverse discontinuous motion, which may used to simulate linear as
well as nonlinear fracture in one and the same formulation. In fact, the linear fracture formulation can be retrieved
from the non-linear cohesive zone formulation simply by confining the cohesive zone to the crack tip.

1 INTRODUCTION
The material forces concept, originating from the work by Eshelby in the beginning of the fifties, is
often used within fracture mechanical modelling due to the close connection between these forces and
material inhomogeneities and discontinuities, see for instance Maugin [1], Gurtin [2], Steinmann [3]
and Steinmann et al. [4].

The objective of this work is to establish a theoretical and computational framework for fracture mod-
elling unifying linear (LEFM) and non-linear (NLFM) fracture behaviour on the basis of the inverse de-
formation problem with an applied discontinuous deformation separated from continuous deformation
using the so-called eXtended Finite Element Method (XFEM), originally introduced by Belytschko and
Black [5] or perhaps rather the partitions of unity concept for crack propagation suggested by Wells and
Sluys [6]. As a result we obtain a unifying Lagrangian/Eulerian description of the fracture mechanical
problem. A strong discontinuity formulation of the crack kinematics is thereby exploited for both the
direct and the inverse deformation maps, leading to unique push-forward - pull-back transformations
between the material and spatial discontinuities. Moreover, upon introducing the material (Eshelby)
stress a separation of the continuous direct motion and the discontinuous inverse motion problems is
obtained in the weak form of the momentum balance. Thereby, the solution of the continuous forward
and the discontinuous inverse problems may be formulated as a coupled problem between the direct
continuous deformation map and the inverse (material) discontinuity. Interesting features of the present
formulation is that, firstly, a cohesive fracture mechanical model is formulated in the inverse material
(crack closing) discontinuity evolution, rather than in the direct spatial (crack opening) discontinuity
evolution. Secondly, the classical notion of LEFM may be distinguished from NLFM simply in terms
of the extension of the cohesive zone.

2 KINEMATICS
In this section we discuss the kinematical representation of the crack. Subsection 2.1 covers the direct
motion description and in the subsequent subsection we consider the inverse motion and also define the
inverse discontinuity and the relation between the same and the direct counterpart.



2.1 Direct discontinuity

As a basis for the kinematical description we first consider the direct deformation map which maps
points in the material reference configuration,X ∈ B0, onto points in the deformed spatial configura-
tion, x ∈ B as

ϕ [X, t] = ϕc [X, t] + HS [S [X]]d [X, t] with d = x− xc (1)

whereHS [S [X]] is the Heaviside function centered at the internal (closed) discontinuity boundary,ΓS ,
shown in Figure 1. The argumentS [X] is defined as

S [X] < 0 X ∈ D−
0 , S [X] = 0 X ∈ ΓS , S [X] > 0 X ∈ D+

0 (2)

with the additional requirement

N =
∂S [X]

∂X
with

∣∣∣∣
∂S [X]

∂X

∣∣∣∣ = 1 for X ∈ ΓS (3)

whereN is the normal vector toΓS pointing into the regionD+
0 . Note that the total deformation map

consist of one continuous part,ϕc, defined onB0 and a discontinuous part,d, defined on a subregion
D0 of B0 (grey area) with assumed Dirichlet boundary conditions along the boundary∂D+

0 \ΓS .
The pertinent deformation gradient becomes

F = ϕ⊗∇X = F c + HSF d + δS d⊗N (4)

with
F c = ϕc ⊗∇X andF d = d⊗∇X (5)

whereδS [S[X]] is the Dirac delta function.

2.1 Inverse discontinuity

With the kinematical representation above it is straightforward to formulate the equilibrium in the weak
sense, as done in e.g. Wells et al. [7]. However, since we want to introduce the Eshelby energy-
momentum tensor we further extend the kinematical framework to also include an inverse discontinuity.

First, we consider a material point on the internal discontinuity boundaryΓS which due to separation
of the material is defined in two inverse deformation maps mapping the corresponding points on either
side of the crack in the spatial configuration back to the single point in the reference configuration, as
shown in the right part of Figure 1. Thus we have

X = φc[xc, t] = φ[x, t] (6)

with
φc[xc, t] = ϕ−1

c andφ[x, t] = ϕ−1 (7)

N

Figure 1:Kinematical representation of the discontinuous direct (left) and inverse (right) motion problem.



By differentiation eqn (6) with respect to time and introducing the direct velocities,vc = ϕ̇c and
v = vc + ḋ, we obtain

Ẋ = f c · vc + V c = 0 (8)

Ẋ = f · (ϕ̇c + HSḋ) + V = 0 (9)

with f c andf being the continuous and total inverse deformation gradient respectively and where

V c =
∂φc[xc, t]

∂t
andV =

∂φ[x, t]
∂t

(10)

We define the inverse discontinuity in terms of its time derivative with respect to fix spatial configuration
◦
D=

∂D

∂t

∣∣∣∣
x fixed

as

◦
D= V − V c (11)

By using eqns (8) and (9) we may express the relation between the direct and inverse discontinuity as

HS f · ḋ = −JfK · vc−
◦
D (12)

whereJfK = f − f c. The relation may also be written in variational form as

HSf ·∆d = − JfK ·∆ϕc − δD (13)

where∆ denotes variations with respect to the reference configuration andδ variations with respect to
spatial configuration.

3 WEAK FORM EQUILIBRIUM
Using the classical formulation of the weak form equilibrium in terms of the first Piola-Kirchhoff stress
tensor,Σt

1, and possible body forces,bmec, along with the kinematics described in Subsection 2.1
considering the continuous portion,ϕc and the discontinuity,d, as two independent fields enables one to
formulate the equilibrium in two coupled equations, one continuous and one discontinuous as done in e.g
Wells et al. [7]. It is rather straightforward to introduce finite element discretizations forϕc andd which
superimposed give the total deformation. However, as earlier mentioned we are interested in including
the energy-momentum tensor,M t = ρ0ψ1 − T (with T being the material mandel stress tensor and
ψ being Helmholtz free energy per unit of volume), why we also include the inverse discontinuity in
view of eqn (13) which (after some derivations) leads to two coupled equilibrium equations. One for
the direct continuous displacement and one for the inverse discontinuous displacement as

(C) :
∫

V0

Σt
1 : ∆F c dV =

∫

Γ0

∆ϕc · t1dΓ +
∫

V0

∆ϕc · bmecdV (14)

(D) :

∫

D0

HSM t : δLD dV +
∫

ΓS

δD ·M t ·NdΓ =
∫

D0

HS δD · (Bmec + Binh) dV

(15)

Here we have introduced the first Piola-Kirchhoff traction vector,t1 = Σt
1 · N , the discontinuous

inverse velocity gradient,δLD = δD ⊗ ∇X , the material body force,Bmec = −F t · bmec, and the

material inhomogeneity force,Binh = − ∂(ρ0ψ)
∂X

∣∣∣∣
expl

, i.e. the explicit dependency of(ρ0ψ) on X.

Note that the normal vectorN is pointing from the minus to the plus side of the interface, and that
Dirichlet boundary conditions are assumed along∂D+

0 \ΓS for D.



4 FRACTURE MODELLING
In the non-linear case we allow for a successive degradation of the stresses alongΓS using a cohesive
zone formulation whereas in the linear case the cohesive zone is confined to the crack tip rendering the
vectorial form of theJ-integral as a reaction force at the crack tip.

4.1 Linear fracture

In the linear case we subdivide the internal boundary in one regular and one singular part recogniz-
ing the fact that the physical stresses are zero on the regular part ofΓS which leads to

∫

ΓS

δD ·M t ·NdΓS =
∫

ΓSr

ρ0 ψ δD ·NdΓS +
∫

ΓSs

δD ·M t ·N sdΓS =

=
∫

ΓSr

ρ0 ψ δD ·NdΓS − δA · J
(16)

where we included also the crack tip extensionδA defined asδA = −δD(XA), even though we have
a Dirichlet boundary condition at the crack tip and whereN s is the non-unique normal vector at the
singular point of the discontinuity surface. It appears that the corresponding force variableJ to δA is
the vectorial form of theJ-integral, first introduced by Rice [8]. Evidently, theJ-integral is obtained as a
reaction force at the crack tip due to the material discontinuity development. Therefore, the computation
thereof follows the basic steps of reaction force calculation, i.e. introduce a local interpolation for the
kinematic variable associated with the reaction force and evaluate the reaction force from the principle
of virtual work. We thus consider the local interpolation

δD = −N [X] δA ⇒ δD ⊗∇X = −δA⊗G with G =
∂N [X]

∂X
(17)

whereN [X] is an interpolation function with local supportD0l in the vicinity of the crack tip, as shown
in Figure 2.

Upon inserting eqn (17) into eqn (16) and using the fact that the normal vectorN s is non-unique, the
Heaviside functionHS can be removed within the integrands, and the crack driving force is obtained as

J =
∫

D0l

(
N [X](Bmec + Binh)−M t ·G

)
dV −

∫

ΓSlr

ρ0 ψ N [X] NdΓ (18)

Pertinent to a mode I discontinuity at the crack tip, the fracture criterion of Griffith’s states that a free
crack surface has been created whenever the stored elastic energy at the crack tip becomes equal to the
fracture energy, i.e.

J = GI
f with J = |J | (19)

Figure 2:Local interpolation function around crack tip, for evaluation of reactive crack driving force.



whereGI
f is the fracture energy (or energy release rate) with respect to the formation of a fracture sur-

face in mode I.

4.2 Non-linear fracture

The non-linear fracture process is considered as an isotropic damage-plasticity process and we propose
a constitutive relation formulated in the crack closing tractionQ, as a function of the inverse disconti-
nuity D. We introduce a scalar damage variable0 ≤ α ≤ 1 so thatα = 0 defines the virgin material
andα = 1 defines the completely damaged material. The tractionQ is then defined in terms ofα and
an effective traction vector̂Q as

Q = (1− α)Q̂ with Q̂ = K ·De = K · (D −Dp) (20)

whereD is the total inverse discontinuity andDp is the part associated with the energy dissipation. For
simplicity we may choseK in terms of a scalarK, an artificial stiffness of the interface, i.e.K = K1.
Next we assume an evolution equation for the damage development related to a plastic multiplierλ

defined so that
◦
α = B

◦
λ . Moreover, the plastic multiplier is controlled by the Karush-Kuhn-Tucker

conditionsF ≤ 0,
◦
λ≥ 0, F

◦
λ = 0 whereF (Q) is the condition for fracture loading and unloading.

We also define an evolution law forDp in terms of a fracture potentialG(Q), corresponding toF (Q)
with no dilation in compression, as

◦
Dp=

◦
λ

∂G

∂Q
=

◦
λ

1− α

∂G

∂Q̂
(21)

Additionally we chose the factorB asB = 1
S(1−α) which enable us to calibrate the model for mode I

fracture by choosingS = GI
f

σf
whereσf is the failure stress in simple tension.

4 NUMERICAL EXAMPLE
As a motivation for the proposed formulation we consider aSingle Edge Notch Testwhere the pre-
dictable capabilities of the linear fracture model is clarified. The specimen in Figure 3 is under plane
strain constraints and loaded vertically along the upper boundary. Moreover the material is of Neo-

Figure 3:Hyperelastic single notch plane strain sheet loaded in tension



Hookean hyperelastic type with Helmholtz free energy defined as

ψ =
1

2ρ0

(
G (1 : (J−

2
3 C)− 3) + k(J − 1)2

)
(22)

with ρ0 being the density of the material with respect to the reference configuration,G = E
2(1+ν) being

the shear modulus andk = E
3(1−2ν) being the bulk modulus of the material andE andν are the well

known Young’s modulus and Poisson’s ratio respectively. Material parameters, traction magnitude and
dimensions are chosen to ensure linear elastic response in order to be able to compare with analytical
solutions for theJ-integral using the linear elastic relation

J =
K2

I

E′ with E′ =
E

1− ν2
(23)

betweenJ andKI whereKI is the stress intensity factor for the corresponding mode I fracture case.
Furthermore, the problem domain is for simplicity discretized with linear triangular finite elements,
thus the same order of approximation for bothϕc andD is used. It turns out that the results become
very sensitive to the mesh density, in particular in the vicinity of the crack tip wherefore we refine
the mesh in the most sensitive region. There are no specific adaptive scheme used for the refinement
but rather an intuitive step by step refinement close to the crack tip. As a result, Figure 4 shows the
relative error in magnitude (left) and the angular deviation from the horizontal direction (right) ofJ as
a function of number of elements in the analysis. Interestingly, the results imply a convergence towards
the analytical value. It may also be noted that when performing a standard finite element calculation, i.e.
no displacement partition, and computingJ according to eqn (18) very similar results as those presented
in the figure below are obtained. The maximum deviation between the results in these two analyzes is
0.2%.
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Figure 4:Reaction force convergence towards analytic value, absolute value (left) and angular deviation (right).
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