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ABSTRACT 
A short overview about the stress distribution of joints under mechanical and thermal loading and the fracture 
criterion is presented. The stresses near the free edge of an interface or near an internal corner are singular in 
most cases. Parameters describing the stress field are the stress exponent, the stress intensity factor and the 
angular function. All these quantities depend in a different way on the material properties of the joint 
materials and the contact angles. The stress distribution is especially complex in a three material joint with an 
interlayer between two materials. There exists no straight forward way to define a fracture criterion. Different 
approaches presented in  the literature are discussed. 
 

1 INTRODUCTION 
Joints of different materials have many applications in structural engineering or  microelectronics. 
Different methods of joining exist, such as soldering or welding. Due to the different elastic and 
plastic properties and thermal expansions of the joined materials, stresses develop under 
mechanical loading and after a change in temperature. The reliability assessment of joints requires 
an accurate calculation of these stresses under the applied loading condition and an assessment of 
the stresses. If an appropriate procedure has been established for the assessment of the stresses, 
geometric design of a joint and selection of suitable materials are possible. The main problem in 
this area consists in the fact that the stresses are especially high at the free edge of the interface 
(open wedge) or at an internal corner. Fig. 1 shows part of a microelectronic component, where the 
critical positions are marked.  

 
Fig.1 Critcal locations of a component          Fig.2 Open wedge and internal corner 
          
 

2  STRESSES AT AN OPEN WEDGE OR AN INTERNAL CORNER 
The geometry of a bimaterial wedge and an internal corner is characterized by the two contact 
angles 1θ and 2θ and by the angle 1θ , respectively (Fig.2). Calculations were performed for 
isotropic and anisotropic materials under elastic and elastic-plastic material behavior with perfect 
bonding or friction sliding contact. Here, isotropic, elastic behavior and perfect bonding at the 
interface shall be assumed. A two-dimensional situation is considered. In this case the stresses can 
be calculated by applying an Airy stress function and the appropriate boundary conditions for 
perfect bonding at the interface. For an open wedge, stress-free conditions are assumed at the open 
faces. Then, the stress tensor is  
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The distance r from the corner point is related to a characteristic size parameter L of the 
component. Then, the stress intensity factor KL has the dimension of a stress. ω is the stress 
exponent. In most cases, 0>ω and, therefore, a stress singularity exists. fij and gij are functions of 
the angle θ . The quantities ijL fK ,,, 0 ωσ and ijg depend on the angles 1θ and 2θ . The elastic 

constants, LK and 0σ , additionally depend on the applied loading. All these quantities, with the 
exception of  KL, are independent of the overall geometry of the component and can be calculated 
analytically. KL depends on the overall geometry and has to be calculated by applying numerical 
methods. The applied load is characterized by an external stress ∞σ for mechanical loading and by 
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plane strain, where iα denotes the thermal expansion coefficients. It will be shown that the second 
term in eq.(1), the regular term which is independent of the distance r, is quite important to thermal 
loading. From eq.(1), it can be seen that the stress distribution depends on the quantities 

ωσ ,, 0LK and on the two angular functions ijf and ijg . All these quantities are dependent on the 
elastic constants in different ways. Whereas the stresses in a homogeneous material with  a crack 
can be characterized by the stress intensity factor, this is not possible for the singular stress field of  
a joint. For some combinations of wedge angles and elastic constants the stress exponent is 
complex: qip +=ω . Then, eq.(1) has to be replaced by 
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As an example the stress exponent of an open wedge and an internal corner is plotted versus the 
ratio E2/E1 for fixed Poisson’s ratios in Fig.3. It can be seen that there are ranges with real and 
complex stress exponents. Furthermore ranges with two or three positive real stress exponents 
exist. Then, the singular term in eqs. (1) and (2) has to be replaced by the sum of two or three 
terms, with different ijL fK ,,ω . In Fig.4 0,, σωLK are plotted versus E2/E1 within the range of real 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Stress exponents, left: open wedge ( )30.,55,165 2121 ===°=°= ννθθ , right: 

         Internal corner ( 1.0,5.0,60 211 ==°= ννθ ) 
 



stress exponents for the example of the open wedge. When ω passes zero, the stress intensity factor 
and the regular stress term 0σ approach infinity with opposite sign.  
     It is important to realize that not only the singular term, but also the regular term and even a 
non-singular term may contribute significantly to the stresses also very close to the singular point. 
This is shown in Fig.5 for a joint under thermal loading 50/,45,115( 2121 =°=°= EEθθ  

)/210,/104104/,059.0,088.0 2121 CMPaKCMPaTK °−=°−=∆−== ωω . The contribution of  
the singular term, non-singular term and regular term are plotted versus the distance from the 
singular point. 
 

                                                                                  
          Fig.4 ωσ ,, 0LK for open wedge of Fig.3                            Fig. 5 Stress components Tr ∆/σ                
 
Now, a joint with contact angles of 90° and an interlayer of thickness H2 shall be considered (Fig. 
6). The stresses in the three materials depend on the material properties of all three materials. 
However some general rules apply. In Fig. 6 the stress along the free surface of material 1 is 
shown. It can be distinguished between a near field, a far field, and a transition region. Both, the 
near field and the far field can be described by eq. (1). For the near field, ijf,, 0σω and ijg depend 
on the elastic  parameters of the adjacent materials (in material 1 on those of materials 1 and 2) 
only. 
 

               
 
Fig. 6 Stresses in a joint with interlayer under thermal loading 
 
 



Only the stress intensity factor KLNF also depends on the thermal expansion coefficients of all three 
materials and on the elastic parameters of the third material. The stress distribution of the far field 
depends on the material properties of material 1 and 3 only and is independent of the properties of 
the interlayer. Especially if KLNF and KLFF have different signs, the curves of the stress components 
versus the distance have a maximum or a minimum. Fig. 6 on the right site shows the stress 
distribution of two other material combinations. In example B, the thermal expansion coefficients 
of materials 1 and 3 are identical. Hence the stresses are zero in the far field. 
 

 
3  FAILURE OF JOINTS   

The fracture of joints under mechanical or thermal loading is caused by the high - mostly singular - 
stresses at the corner point. In linear-elastic fracture mechanics a relation similar to eq.(1) exists 
for cracks in homogeneous materials. For all crack configurations, the stress exponent is 0.5 and 
the angular function fij is the same. Under a homogeneous change of temperature, no stresses occur 
and the regular term (the T-stress) is not important in many cases. Hence the stress state is 
characterized by the stress intensity factor alone, and fracture occurs at a critical value for a given 
material, the fracture toughness KIC. In a joint all quantities ijL fK ,,, 0 ωσ and ijg depend on the 
material properties and contact angles in different ways. Therefore, a critical value of KL does not 
exist and a more complicated fracture criterion has to be found. First, let us look on the strength 
under mechanical loading. Eq.(1) is reduced to      

                                   )()(
)/(

θθσ ωω ijij
L

ij f
r
M

f
Lr

K ==                                                                    (6)                                                

Failure occurs at  
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KL is proportional to the external stress *σ  applied: 
                                               ),,,(* 21 θθβασ YK L =                                                                    (8)                                                                                        
Therefore, the critical external stress *cσ  is 
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Fig. 7 Strength versus thickness of interlayer [1]          Fig. 8 Strength versus thickness of an  
                                                                                                 aluminium-epoxy joint [2] 

For identical material combinations and contact angles, the strength is proportional to ω−L , 
provided that the overall geometry is constant. If the notch depth a is varied, then Y is a function 
of the relative notch depth. Eq.(9) is confirmed by results given in literature. 
The first example is a joint of stainless steel with an epoxy interlayer [1]. The relevant size 
parameter is the thickness of the interlayer H. From the elastic constants of stainless steel and 
epoxy, a stress exponent of 30.0=ω is calculated. The failure strength is plotted versus H in the 
log-log plot of  Fig. 7. The data are in agreement with the predicted slope. The second example is a 



joint of epoxy and aluminum [2]. The specimen is loaded at the edges and, thus, a 3D loading 
situation exists. In this case, the angular function f depends on two angles. In Fig. 8 the strength is 
plotted versus the size W on a log-log scale. Again, the slope is in agreement with the theoretical 
value of - 0.351. 
     So far, we have considered joints, where the materials and contact angles were identical and the 
size was varied. The more general problem is to predict the failure load of a component with 
arbitrary contact angles from the measured strength of a simple test specimen. No straight forward 
method can be applied. Therefore, different fracture criteria have been proposed: 
♦ Critical stress at a distance r0 from the wedge tip along the interface, where the normal stress 

or the shear stress can be considered 
♦ Critical average stress at a distance r0 along the interface. For normal stress as the relevant 

stress component, this leads to  
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Under mechanical loading ( 00 =σ ) the critical external stress is 
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For both criteria the critical distance r0 has to be determined. As an example, results of Hattori et 
al. [4] are presented. As shown in Fig. 9, an epoxy and an Fe-Ni alloy were bonded  and different 
geometries were selected. The bonding temperature was 100°. During cooling, delamination was 
observed. The critical delamination temperature was determined. From stress analysis, the critical 
stress intensity factor MC was calculated. In Fig.9 MC is plotted versus the stress exponent. Fig.10 
shows the shear stress along the interface versus r. Selecting a critical distance of r0 = 0.64 mm 
leads to a common average shear stress of about 14.4 MPa.  
 

                
Fig. 9 Fracture toughness MC versus stress                  Fig. 10 Normal stress at interface for the  
          Exponent for an epoxy/Fe-Ni-alloy [3]                           different joints of Fig. 9 
 
In joints with one component being a ceramic, the failure very often starts in the ceramic near the 
free edge of the joint. Failure in ceramics is initiated at inherent flaws. A large scatter in the 
strength is observed due to the scatter in the flaw size. This scatter can be described by a Weibull 
distribution. By applying multiaxial Weibull statistics [4] it is possible to predict the failure 
probability of a component from the failure probability of test specimens. The probability of 
failure below an applied stress σ is  



                                             
�
�

�

�

�
�

�

�

�
�
�

	




�

�
−−=

m

F
0

exp1
σ
σ

                                                                    (12)     

                               
The Weibull exponent m should be a material parameter independent of the geometry of the 
component and the stress distribution in the component. The second parameter 0σ depends on the 
geometry of the component and the multiaxial stress distribution in the component. In Fig16 the 
Weibull distribution of the strength of different geometries of a joint of alumina with Fe-Ni alloy 
is shown together with the strength distribution obtained from bending tests of alumina.  
 

                                         
 
                                  Fig. 11 Weibull-plot of different geometries of an Al2O3/Fe-Ni-alloy 
 
The parameter m (slope of the straight lines) depend on the joint geometry and are smaller than m 
of the alumina specimens. This difference is due to the violation of a basic assumption of the 
Weibull theory: A constant stress along the flaw, which causes failure. This requirement is not 
fulfilled for cracks near the singular stress field. To obtain an improved Weibull-distribution the 
relation 
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with σ and Y being constant has to be replaced by 
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where )(xσ is the normal stress and )(xτ the shear stress along the crack, and hI and hII  are the 
mode I and mode II weight functions, that depend on the elastic properties of the materials and the 
distance from the interface [6]. 
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