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ABSTRACT
A sequentially linear saw-tooth continuum model which captures the nonlinear response via a series of linear
steps is presented. In the model, the softening stress-strain curve with negative slope is replaced by a saw-
tooth diagram of positive slopes, while the incremental-iterative procedure is replaced by a scaled
sequentially linear procedure. Mesh-size objectivity is achieved by adjusting both the peaks and the ultimate
strain of the saw-tooth diagram to the size of the finite elements, keeping the fracture energy invariant. First,
considering large-scale dog-bone specimens in direct tension, it will be demonstrated that the model is
capable of automatically providing the snap-back response. Furthermore, the bifurcation problem is
circumvented as the scaling process triggers the lowest non-symmetric equilibrium path. Secondly, the model
is extended from an isotropic to an orthotropic format, taking into account the direction of cracking and the
anisotropy of the induced damage. In this way, the model can compare with classical fixed smeared crack
models. This improvement allows for studying reinforced concrete structures, in which compressive struts
develop parallel to the crack directions.

1 INTRODUCTION
Negative stiffness due to softening is a major problem in computational modeling of concrete
fracture. It may lead to numerical instability and divergence of the incremental-iterative procedure.
This holds especially for the analysis of medium- and large-scale structures. To try and solve such
problems, users have to resort to arc-length or indirect control schemes, which are cumbersome
and often inadequate when the peaks are irregular or the snap-backs sharp.

As an alternative, this paper presents a sequentially linear saw-tooth continuum model, which
captures the nonlinear response via a series of linear steps. The softening stress-strain curve with
negative slope is replaced by a saw-tooth diagram of positive slopes, while the incremental-
iterative procedure is replaced by a scaled sequentially linear procedure [1] . After a linear
analysis, the critical element, i.e. the element for which the stress is closest to the current peak in
the saw-tooth diagram, is traced. Next, the stiffness of that element is reduced and the process is
repeated. The sequence of critical states governs the global load-displacement response, while the
elements with reduced stiffness reveal the softened areas. The advantage is that there is no such
thing as ‘negative incremental stiffness’, as the secant linear (saw-tooth) stiffness is always
positive. The analysis always ‘converges’. Mesh-size objectivity is achieved by adjusting both the
peaks and the ultimate strain of the saw-tooth diagram to the size of the finite elements, keeping
the fracture energy invariant [2] . In addition, the model is improved to take into account the
intrinsic anisotropy due to crack nucleation and softening. This is a crucial aspect in order to
describe reinforced structures, in which the reinforcement (ties) is balanced against compressive
struts that develop parallel to the crack directions.

2 ISOTROPIC SAW-TOOTH SOFTENING
The basic idea is to look for the equilibrium configuration via secant approximations with restarts
from the origin. The softening diagram is approximated by a saw-tooth curve and linear analyses



are carried out sequentially [1] . This is similar to procedures for fracture analysis on lattices [3]
[4] , where little beam elements are removed rather than continuum elements reduced.

In a sequentially linear strategy, the softening diagram can be imitated by consecutively
reducing Young’s modulus E as well as the strength ft ,. Young’s modulus can e.g. be reduced
according to:
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with i denoting the current stage in the saw-tooth diagram, i-1 denoting the previous stage in the
saw-tooth diagram and a being a constant. N denotes the amount of reductions that is applied in
total for an element. When an element has been critical N times, it is removed completely in the
next step. Please note that here we adopt the curve only as a 'mother' or envelope curve that
determines the consecutive strength reduction in sequentially linear analysis. In the present study,
attention is confined to a linear softening diagram, thus the ultimate strain eu of the diagram reads:
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The reduced strength fti corresponding to the reduced Young’s modulus Ei is taken in accordance
with the envelope softening stress-strain curve. An advantage of the model is that the regular
notions of fracture mechanics, like the principal tensile stress criterion, the envelope strength and
fracture energy are maintained which helps in reaching realistic energy consumption and
toughness as observed in experiments.
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Figure 1:  Saw-tooth softening approximation scheme, the underestimated area is shown in gray
(a). Regularization scheme with both the ultimate strain and the tensile strength update (b).

2.1 Mesh regularization

In order to achieve mesh-size objectivity, the ultimate strain eu in smeared crack models is usually
adjusted to h according to Eq. (2) for linear softening [5] . In previous works [2] , it appeared that
such adjustment is not sufficient to guarantee mesh-size objectivity for the case of the sequentially
linear model. In fact, due to the saw-tooth approximation of the softening curve, the dissipated
energy is always less than the theoretical one, i.e. the one referring to the smooth 'mother'
softening curve (Fig.1a). The basic idea, thus, is to update the tensile strength, or the ultimate



strain, or even both, in order to keep the dissipated energy invariant. In other words, the area A*,
under the updated constitutive law, becomes invariant and equal to:

h

G
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Eq. 6 shows clearly that not only the number of teeth, but also the mesh size (i.e. the crack band
width h) comes into play. Although in principle different approaches can be followed, it has been
proved that the most effective technique is to update both the tensile strength and the ultimate
strain. Therefore, the updated strength ft

*=kft and the ultimate strain et
*=keu will be assigned, where

the factor k can be determined [2]  in such a way that the new area satisfies Eq. 6 (see Fig. 1b).

3 LARGE-SCALE DOG-BONE SPECIMENS IN DIRECT TENSION
The case study concern direct tensile tests carried out on large-scale dog-bone concrete specimens
[6] . In order to prove the ability of the saw tooth model to capture the structural snap-back [7] [8],
we considered the largest size among the entire series, denominated as type F (D =1600 mm;
r=1160 mm). The mechanical parameters obtained by the test were adopted for the numerical
analysis, i.e. a nominal tensile strength ft=2.31 N/mm2 and a fracture energy Gf=0.1411 N/mm. A
linear softening tail was assumed.

3.1 Smeared crack nonlinear analysis

Boundary conditions were carefully taken into account modeling the central hinges at top and
bottom used to de-constrain the structure. The influence of the boundary condition on post peak
behavior is crucial [6] , both from an experimental and numerical point of view. The outcome of
the numerical simulation depends on the control parameter. If the simulation is performed under
load control, only the pre-peak branch of the load displacement curve can be traced. If the
simulation is carried out with displacement control, on the other hand, the load displacement curve
can be traced a bit further, till the snap-back phenomenon takes place. After that the analysis can
be continued, but there is a sudden jump on the lower equilibrium path (i.e. snap-back). The third
possibility is to adopt an indirect load control, e.g. with the arc-length methods [9] [10] . In this
case, it is finally possible to obtain the whole load displacement curve.
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Figure 2:  Mesh of the dog bone specimen (a); deformed mesh and principal tensile strain contour

referring to the last sequentially linear step (b). Snap-back in the load displacement curve (c).



Unfortunately, the choice of load steps or of the arc-length options and indirect control
parameters, is usually cumbersome, and difficulties increase with increasing the size (i.e. the
brittleness) of the structure.

Another problem with the nonlinear analysis is the bifurcation. In fact, as soon as the peak load
is reached, due to the symmetry of the structure, two different equilibrium paths arise. The
symmetric path is unstable, and is not encountered experimentally, while the non-symmetric stable
path is characterized by crack propagation from one side only of the dog-bone specimen.
Consequently, a negative pivot arises, in the LDU scheme, due to the bifurcation of equilibrium,
and it is necessary to introduce a perturbation of symmetry (geometrical or material) in the model,
in order to get a solution.

3.2 Isotropic sequentially linear analysis

The same mesh and the same mechanical parameters were adopted for the saw tooth analysis (Fig.
3a). The analysis was carried out with a ten teeth approximation. The load displacement curve is
depicted in Fig. 3c, and shows a very good agreement with the smeared crack nonlinear analysis. It
is worth noting that both curves compare well with experimental results. The advantage of the
sequentially linear analysis is that the system is always positive definite, so that a solution is
always found at each step. The sequence of linear solutions automatically provides the snap-back.

When the solution is considered to be too coarse, showing an irregular spiky pattern, it is
sufficient to refine the discretization, i.e. decreasing the mesh, or to increase the number of teeth.

Another advantage is that the numerical round-off implicitly breaks the symmetry of the
model. There is no need to add imperfections to the model in order to follow the stable equilibrium
path. At the same time, the indirect control of the structure is not required any more, since the
effective control parameter is the propagating damage itself. The sequentially linear simulation
provides not only the correct load displacement curve, but also the correct damage localization in
the central part of the sample, induced by the dog-bone shape of the specimen (Fig. 3b).

4 ANISOTROPIC SEQUENTIALLY LINEAR: FIXED CRACKING
Although the isotropy assumption taken above allows for the simulation of cracking of plane
concrete in direct tension or bending, a substantial improvement is necessary when dealing with
reinforced concrete. In fact the isotropic reduction of stiffness does not represent the compressive
struts that develop parallel to the cracks. Therefore, in analogy to the pioneering approach of [11] ,
the initial isotropic stress-strain law can be replaced by an orthotropic law upon crack formation,
with the axes of orthotropy being determined according to a condition of crack initiation.

Referring to the plane stress situation, and to a local coordinate system oriented parallel to the
crack plane, the following constitutive relation is assumed:
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where n is the normal to the crack, t the crack plane, Ei the reduced Young modulus according
to the sequentially linear scheme, and b the so-called shear retention factor.



Given the following transformations for the strain and stress vectors:

† 

ent = Te (f)exy

s nt = Ts (f)s xy
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eq. 8 can be easily transposed in terms of global stress and strain components by pre- and post-
multiplication with the transformation matrices:

† 

s xy = Ts
-1(f)DnsTe (f)exy . (10)

The above improved constitutive law was implemented in the general sequentially linear
scheme.
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Figure 3:  Long-embedment tension-pull specimen. Nonlinear cracking (a), nonlinear deformed

mesh (b). Sequentially linear compressive struts (c) and deformation (d). Load-displacement
curves: experimental [12] , nonlinear [13]  and sequentially linear analysis (e).

4.1 Reinforced tension-pull specimen

A long-embedment tension-pull specimen is considered [12] . The steel is modeled by truss
elements, and the concrete by axis-symmetry elements.

Perfect bond between steel and concrete was assumed. The strength of the concrete was
assigned via a random generation of tensile strength (mean ft=3.0 N/mm2, standard deviation equal
to 0.5 N/mm2).

In Fig. 4e, results from nonlinear smeared analysis and experiments are compared with the
load-displacement curve for the anisotropic sequentially linear model. Although the behavior is
more brittle, the sequentially linear analysis is in good agreement with the nonlinear results, being
able to describe snap-back and snap-through behavior. In Fig. 4a-d, the comparison is made in
terms of crack localization and resulting deformed meshes. Four primary cracks emerge. In



particular, Fig. 4c shows how compressive struts arise in the anisotropic saw-tooth analysis. With
the former isotropic version of the model, the struts (compressive cones) could not develop and an
incorrect crack evolution was obtained.

5 CONCLUSIONS
The saw-tooth sequentially linear model has been reviewed in order to emphasize its ability to
capture snap-back and snap-through instabilities automatically, without numerical problems. The
model has thus been improved taking into account the damage anisotropy induced by cracking.
The effectiveness of the model to capture basic features of reinforced structures has been evaluated
by the example of the long-embedment tension-pull test.
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