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Abstract 

We study the initiation and propagation of a crack in a functionally graded (FG) plate comprised of tungsten 
(W) and nickel-iron (NiFe) and deformed in either plane strain tension or mode-II.  Each constituent and the 
composite are modeled as isotropic thermoelastoviscoplastic material with the material behavior represented 
by the Johnson-Cook relation.  Values of effective parameters for the composite are derived by the rule of 
mixtures.  Two cases are studied; in one the volume fraction of W varies linearly from 0% at the left edge to 
100% at the right edge and in the other the volume fractions are reversed.  These are identified as NiFe2W 
and W2NiFe respectively.  It is found that for mode-I deformations, plastic deformations at points near the 
crack-tip are infinitesimal and the crack propagation speed, C, varies with the crack length.  For the W2NiFe 
FG plate, C continues to increase monotonically but for the other FG plate, it seems to approach a steady 
value.  However, when deformed in mode-II, significant plastic deformations occur at points near the crack-
tip; this work is underway and will be reported at the conference.  The effect of the imposed nominal strain 
rate on the initiation and propagation of a crack has also been scrutinized. 
 

1  INTRODUCTION 
Modeling crack propagation during the solution of a transient problem by the finite element 
method (FEM) is very challenging since the crack initiation point and its path are to be determined 
as a part of the solution of the problem.  Three strategies used to analyze fracture are:  (i) 
introducing cohesive elements along inter-element boundaries that are weak in shear and tension 
but very strong in compression, (ii) representing a crack as two traction-free surfaces by placing 
two coincident but unconnected nodes at the crack initiation point and relieving tractions on the 
newly created crack surfaces, and (iii) reducing elastic constants in the failed region to zero and 
virtually eliminating these elements from the analysis of the problem.  Each of these techniques 
has its advantages and disadvantages.  An accurate modeling of the crack path and hence its speed 
of propagation requires a very fine FE mesh.  Here we analyze transient plane strain coupled 
thermomechanical deformations of a FG microporous thermoelastoviscoplastic body and assume 
that a crack initiates at a point when either the effective stress there has reached 3σ0 or the porosity 
there equals 0.25.  The body is either loaded axially to induce mode-I failure or in shear to 
simulate mode-II failure.  As soon as a fracture criterion is met at a node N, two coincident but 
unconnected nodes are located there and joined to the node N*.  The node N* is selected so that 
the gradient of the failure variable is least along the line NN*.  Newly created crack surfaces are 
taken to be traction free and thermally insulated.  Thus elastic unloading waves emanate from the 
crack surfaces and propagate into the body.  By locating the crack tip at different times, we 
ascertain its speed. 
 

2  FORMULATION OF THE PROBLEM 
The balance laws for mass, linear momentum, moment of momentum, and the internal energy, are 
written in the Lagrangean or the referential description of motion.  Elastic deformations, heat 
conduction and stresses due to thermal expansion are considered.  Following assumptions are 
made in the analysis of the problem: (i) the strain rate tensor is additively  decomposed into an 
elastic part, a plastic part and a thermal part; (ii)  the Jaumann rate of the Cauchy stress tensor is a 



linear function of the elastic part of the strain rate tensor; (iii) Young’s modulus and the shear 
modulus decrease affinely to zero when the porosity approaches one; (iv) the porosity represents 
damage induced in the body; (v) the specific heat and the thermal conductivity are affine functions 
of porosity; (vi) a material point  deforms plastically when the stress state satisfies Gurson’s flow 
potential modified for its dependence upon the porosity and the dependence of the flow stress 
upon the plastic strain, plastic strain rate and temperature; the latter is assumed to be given by the 
Johnson-Cook relation; (vii) the associative rule of plasticity gives the plastic part of the strain rate 
tensor; (viii) Chu and Needleman’s expression for the evolution of porosity applies; (ix) the rate of 
change of internal energy is a linear function of the first and the second time derivatives of 
temperature thereby resulting in a hyperbolic heat equation, and (x) each constituent and the 
equivalent homogenized medium are isotropic.  Thus, both mechanical and thermal disturbances 
propagate at a finite speed.  A complete set of equations and values of material variables used in 
computing results are given in [1]. 
 We first analyzed transient deformations of a representative volume element (RVE) to 
evaluate effective properties of the composite as a function of the volume fraction of constituents.  
Values of elastic parameters so determined were found to match well with those given by the 
Mori-Tanaka scheme.  However, values of parameters characterizing the plastic deformation could 
not be satisfactorily determined from deformations of the RVE.  We thus use the rule of mixtures 
to evaluate values of all material parameters from those of the constituents and their volume 
fractions.  It gives exact values of the mass density and the heat capacity, is simple to use, and 
often gives an upper bound for values of the composite.   

We assume that the body is prismatic of uniform square cross-section, initial and 
boundary conditions are independent of the axial coordinate, and a plane strain state of 
deformation prevails in the body.  When studying mode-I failure, an equal and opposite axial 
velocity is applied to the smooth top and bottom surfaces with a small horizontal sharp precrack 
present at its centroid.  The thermomechanical deformations are assumed to be symmetric about 
the two centroidal axes.  Thus deformations of only the right-half of the cross-section are analyzed 
with boundary conditions arising from the symmetry of deformations imposed at points on the 
vertical centroidal axis.  The other vertical surface is taken to be traction free and thermally 
insulated.  Normal velocity, null tangential tractions and zero heat flux are prescribed on the top 
and the bottom horizontal surfaces.  The prescribed normal velocity increases linearly with time to 
its steady state value in 1 µs and is then held there.  The body is initially at rest, at a uniform 
temperature and has zero initial porosity. 

 
3  WEAK FORMULATION OF THE PROBLEM 

The constitutive assumptions identically satisfy the balance of moment of momentum.  Galerkin’s 
method is used to derive a weak form of the balance of linear momentum, the balance of internal 
energy, equations expressing the Jaumann rate of the Cauchy stress tensor in terms of the elastic 
part of the strain rate tensor, and evolution equations for the effective plastic strain rate and the 
porosity, and of the velocity equaling the time rate of change of the present position.  The 
Johnson-Cook relation is rewritten to express the effective plastic strain rate in terms of the 
effective stress, the effective plastic strain and the temperature.  Also, an auxiliary variable equal 
to the time rate of change of temperature is introduced.  Thus at each node there are thirteen 
unknowns, namely two components of the position vector, two components of velocity, four 
components of Cauchy’s stress tensor, porosity, temperature, its rate of change, the effective 
plastic strain, and density.  Galerkin’s approximation incorporates natural boundary conditions and 
results in a system of coupled nonlinear ODEs for the unknowns.  These ODEs are integrated by 
using the subroutine LSODE.  During this integration process, essential boundary conditions are 



imposed.  The subroutine adjusts the time step adaptively to compute the solution within the 
prescribed accuracy.   

            
4  COMPUTATION AND DISCUSSION OF RESULTS 

The 10 mm x 10 mm cross-section has an initial sharp crack of length 1 mm at the vertical 
centroidal axis with the center of the crack coincident with the centroid of the plate.  The plate is 
deformed at an average axial strain rate of either 200/s or 2,000/s.  Values of Young’s modulus, E, 
mass density, ρ, and Poisson’s ratio, υ, for W and NiFe, and the speeds of the longitudinal wave in 
a bar and the Rayleigh waves are listed in the following Table. 
 Even though deformations are symmetric about the two centroidal axes, symmetry about 
the horizontal centroidal axis is exploited to reduce the problem size.  The analysis of 
deformations of half plate facilitates using the node release technique for studying crack 
propagation.  The FE mesh used to analyze the problem is 
 

Table 1:  Material parameters and wave speeds for nickel-iron and tungsten. 
 

 Young’s 
modulus 

(GPa) 

Poisson’s 
ratio 

Mass 
density 
(kg/m3) 

Bar wave 
speed 
(m/s) 

Acoustic 
impedance 

(Eρ)0.5 

(kg/m2 s) 

Rayleigh 
wave speed 

(m/s) 

NiFe 255 0.29 9200 5265 48.44 x106 3035 
Tungsten 406 0.20 17000 4887 83.08 x106 2874 

 
 

 
 

Figure 1:  FE mesh for plane strain tensile deformations of pre-cracked plate. 
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depicted in Fig. 1.  It consists of 17,444 4-node isoparametric quadrilateral elements with 1,080 
elements along the axis of the crack.  There are 108 elements behind the crack-tip and 972 ahead 
of it.  The code has been validated by ensuring that the computed speed of an elastic wave is very 
close to the analytic value when E and ρ vary along the direction of propagation of the wave; the 
analytical solution is given in [2].  Once the failure criterion at a node has been met, that node is 
split into two essentially overlapping but unconnected nodes as described in the Introduction.  
Thus an elastic unloading wave emanates from the newly created crack surfaces and propagates 
into the body.  The position of the crack tip at different times is determined and a polynomial is fit 
to the data.  The first derivative of this polynomial fit gives C as a function of time. It was found 
that C so determined is very sensitive to the polynomial fit.  Three curve fits with the coefficient 
of regression > 0.999 gave noticeably different values of C.  Thus C at a point is taken to equal the 
slope of the least squares line through 21 points with 10 immediately preceding it and 10 
immediately following it.  The crack propagation speed, C, vs. the crack length for nominal strain 
rates of 200/s and 2,000/s is depicted in Figure 2; the Rayleigh wave speed is also plotted in the 
Figure.  Freund’s [3] analysis of crack propagation in an infinite homogeneous elastic body shows 
that the maximum crack propagation speed equals the Rayleigh wave speed; Eischen [4] has 
proved a similar result for nonhomogeneous materials.  For the two homogeneous and the two FG 
plates, the crack propagation speed, C, is higher when the nominal strain rate is 2,000/s than that at 
a nominal strain rate of 200/s.  For the W plate deformed at 200/s, C increases as the crack 
propagates to the right edge of the plate but at the higher strain rate of 2,000/s, it soon approaches 
a steady value that is a little less than the Rayleigh wave speed.  For a NiFe plate deformed at 
2,000/s, the crack propagates to the right for a little while and then a large region of the plate 
ahead of the crack suddenly shatters as indicated by the maximum principal tensile stress 
exceeding 3σ0.  It is signified in Fig. 2b by the sudden drop in the crack propagation speed C.  For 
W2NiFe FG plate, C continues to increase with the crack length, is always less than the Rayleigh 
wave speed when the plate is deformed at 200/s but approaches the Rayleigh wave speed when the 
nominal strain rate is 2,000/s.  However, for the NiFe2W FG plate, even though the Rayleigh 
wave speed decreases monotonically with the distance from the left edge because of the spatial 
variation in the material properties, the computed crack speed C first increases and approaches 
essentially a steady value after the crack has propagated a certain distance. 
 We have plotted in Figure 3 the variation of the axial load as the crack propagates to the 
right.  At a strain rate of 200/s, the crack propagation is stable in both pure W and W2NiFe FG 
plates as signified by the increase in the axial load except when the crack has propagated to a point 
near the right edge.  However, at the higher strain rate of 2,000/s, the crack propagation seems to 
be unstable in the beginning and becomes stable once the crack length equals approximately one-
half of the plate width.  A similar situation occurs in pure NiFe and NiFe2W FG plates except that 
a large chunk of material ahead of the crack suddenly fails in the pure NiFe plate deformed at a 
nominal strain rate of 2,000/s. 
 

5  CONCLUSIONS 
We have analyzed the initiation and propagation of brittle fracture in homogeneous and 
functionally graded plates deformed in plane strain tension at nominal strain rates of 200 and 
2,000/s.  It is found that the crack propagation is stable at the strain rate of 200/s but is unstable at 
the higher strain rate of 2,000/s till the crack length equals one-half the plate width.  When the 
crack length in a NiFe plate deformed at 2,000/s equals one-half the plate width, a large region of 
the material ahead of the crack tip fails instantaneously signifying shattering of the plate.  For the 
finite size plate studied here, the maximum computed crack speed is almost equal to the Rayleigh 
wave speed.  For an FG plate, the Rayleigh wave speed varies with the position as depicted in 
Figure 2. 



 
Acknowledgements:  This work was partially supported by the NSF grant CMS0002849, the ONR 
grant N00014-98-1-0300, the ARO grant DAAD19-01-1-0657 and the AFOSR MURI to Georgia 
Institute of Technology with a subcontract to Virginia Polytechnic Institute and State University.  

 
6  REFERENCES 

1. Batra, R.C., Love, B.M., Adiabatic shear bands in functionally graded materials, J. of Thermal 
Stresses (in press). 

2. Chiu, T.C., Erdogan, F., One-dimensional wave propagation in a functionally graded medium, 
J. of Sound and Vibration, 222, 453-487, 1999. 

3. Freund, L.B., Crack propagation in an elastic solid subjected to general loading – III.  Stress 
wave loading, J. of the Mechs. and Physics of Solids, 21, 47-61, 1973. 

4. Eischen, J.W., Fracture of nonhomogeneous materials, Int. J. of Fracture, 34, 3-22, 1987. 
 

crack length (mm)

cr
ac
k
p
ro
p
ag
at
io
n
sp
ee
d
(k
m
/s
)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

W - 200 s-1

W - 2000 s-1

W - Rayleighwave speed

 (2a)     crack length (mm)

cr
ac
k
pr
op
ag
at
io
n
sp
ee
d
(k
m
/s
)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
1.0

1.5

2.0

2.5

3.0

3.5

NiFe - 200 s-1

NiFe - 2000 s-1

NiFe - Rayleigh wave speed

(2b) 
 

crack length (mm)

cr
ac
k
pr
op
ag
at
io
n
sp
ee
d
(k
m
/s
)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

W to NiFe - 200 s-1

W to NiFe - 2000 s-1

W to NiFe - Rayleigh wave speed

(2c)     crack length (mm)

cr
ac
k
pr
op
ag
at
io
n
sp
ee
d
(k
m
/s
)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

NiFe to W - 200 s-1

NiFe to W - 2000 s-1

NiFe to W -Rayleigh wave speed

(2d) 
 
Figure 2:  Crack propagation speed versus crack length at nominal rates of 200/s and 2000/s for (a) 
tungsten, (b) nickel-iron, (c) W2NiFe, and (d) NiFe2W. 
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Figure 3: Axial load versus crack length at nominal strain rates of 200/s and 2000/s for (a) 
tungsten, (b) nickel-iron, (c) W2NiFe, and (d) NiFe2W. 


