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ABSTRACT

One of the most widely used hydraulic fracturing models in the oil and gas industry is the so-
called PKN model (named after Perkins, Kern and Nordgren). Based on certain geometrical
assumptions, in the PKN model the elasticity equation (which relates the fracture width with the
internal fluid pressure) is reduced to a local operator. This local operator imposes a zero pressure
boundary condition at the fracture tips, which is incompatible with the classical square-root tip
asymptote. This limitation reduces the applicability of the PKN model to situations in which the
rock toughness is negligible. In this paper, we propose an alternative, non-local formulation for the
elasticity equation of a PKN-type fracture. We also perform a near-tip asymptotic analysis of the
new equation, and show the presence of a “plane-strain” zone near the advancing tip, in which the
appeareance of fluid pressure singularities (similar to those obtained in pure plane-strain fracture
models) is predicted.

1 INTRODUCTION

Hydraulic fracturing is one of the main techniques employed by the oil and gas industry
to increase the productivity of hydrocarbon reservoirs. Modeling of hydraulic fractures
(specifically for oil and gas applications) dates back to the 1950s. Due to the complexity of
the coupled mechanisms that control the propagation of hydraulic fractures (the deformation
induced by the fluid pressure on the rock, the flow of fluid within the fracture, and the
fracture propagation criterion) the use of idealized models became necessary for studying
this process. One of the first (and still more widely used) of such idealized models is the
so-called “PKN fracture” (named after Perkins & Kern [1], Nordgren [2], later modified by
Kemp [3]).

2 THE PKN HYDRAULIC FRACTURE MODEL

A schematic of the geometry of the PKN model is depicted in Fig. 1: a hydraulic fracture
propagates along the x-axis while fully contained within a rock layer of constant thickness
2H, with elastic properties defined by its Young’s modulus E and Poisson’s ratio ν. Propa-
gation is assumed to be symmetric with respect to the wellbore (represented by the y-axis),
and perpendicular to the minimum in situ stress σo. It is assumed that (i) the fracture
half-length c is much greater than its height; and (ii) the fracture width varies slowly along
the propagation axis of the fracture. From these, it is concluded that an approximate state
of plane strain prevails in planes that are perpendicular to the propagation axis. Thus the
fracture shape at any such cross section can be approximated to an elliptical plane-strain
fracture with constant internal pressure. We define wo(x, t) as the maximum width of the
fracture at any point of coordinate x, and p(x, t) = pf(x, t) − σo as the net fluid pressure,
with pf being the absolute fluid pressure.



There are three fundamental equations to be considered in the PKNmodel: an equation
that relates the fluid pressure with the elastic deformation of the solid; an equation that
describes the flow of a viscous fluid inside the fracture; and a continuity or fluid volume
balance equation. These equations constitute a coupled system that must be solved with a
suitable fracture propagation condition.

Figure 1: Schematic of the PKN hydraulic fracture model.

For the purpose of this analysis, we are considering only the elasticity equation. Given
the particular geometry of the PKN model, Perkins and Kern [1] postulated that the elas-
ticity equation can be expressed in terms of a local operator of the form

wo =Mc p (1)

where Mc = 4H/E0 is the fracture compliance, with E0 = E/(1− ν2) being the plane-strain
Young’s modulus. The use of this local elasticity equation greatly reduces the difficulty of
solving the PKN model. However, as proved by Kemp [3], this same feature implies that the
shape of the advancing tip of a PKN fracture is asymptotically given by wo ∼ (1∓ x/c)1/3,
which is incompatible with the classical square-root asymptote. This limitation constrains
the application of the model to situations in which the toughness of the rock is negligible,
compared to other energy dissipation mechanisms.

3 NEW FORMULATION OF THE ELASTICITY EQUATION

An alternative non-local formulation of the elasticity equation for a PKN-type fracture can
be derived from the general elasticity equation of a planar fracture (e.g., Hills et al. [4]). By
retaining the assumptions that the shape of any vertical cross section is elliptical, and that
the fluid pressure does not depend on the y coordinate, we obtain
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where K(·) and E(·) represent the complete elliptic integrals of the first and second kind,
respectively (Abramowitz & Stegun [5]), and
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integral, in the Hadamard sense. In the above, we have introduced the following scaling
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with w∗ being the proper lengthscale for the fracture width (which we leave undefined in
this paper). Using integration by parts, (2) can be further reduced to
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where sgn(·) represents the sign of the argument, ()0 indicates the derivative with respect to
the argument, and

R− indicates a Cauchy principal integral.

4 ASYMPTOTIC ANALYSIS

4.1 Asymptotic Expansions of the New Elasticity Kernel

We perform an asymptotic analysis of the elasticity equation (4) assuming the dimensionless
ratio β = H/c ¿ 1, which is a characteristic of a PKN-type fracture. We make use of the
following asymptotic expansions for E (·):
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where we can take ω = |ρ| /β. These expansions, when truncated after the third term, are
actually valid up to ω ∼ O(1). Fig. 2 shows a comparison between the exact kernel and the
two expansions.

Figure 2: Plot of E(−β2/ρ2) (solid line) versus |ρ| /β. The expansions (5a) and (5b), both
truncated at the third term, are plotted for comparison. The first terms of both expansions
are also plotted.

Defining ρ = ξo−ξ, from Fig. 2 it is clear that within a region ξo ∈ [ξ−β/10, ξ+β/10],
the behavior of the elastic kernel is dominated by the term β/ |ρ|, which is the classical plane-
strain singularity of the elasticity kernel. For ρ & 10β, we have that E

¡−β2/ρ2¢ starts to
be dominated by a constant term, i.e., we start to recover the “classical” PKN behavior



(local dependency between Π and Ω). We assume that Ω is an analytic, symmetric (even),
positive function in ξ ∈ (−1, 1), with Ω(ξ = ±1) = 0. We also assume that the fracture
tips are blunt, i.e., that Ω approaches asymptotically the tips as Ω ∼ A(1 ∓ ξ)α, ξ → ±1,
with 0 < α < 1, and A being an arbitrary positive constant. The gradient Ω0 has singular
asymptotics of the form Ω ∼ Aα(1∓ ξ)α−1, ξ → ±1.
4.2 Outer Expansion

Let us first consider the case of a point ξ “away from the tips,” which we define as |ξ| < 1−β.
Under the condition of β ¿ 1 and assuming that the gradient Ω0 can be approximated via
a Taylor’s series expansion, we obtain an expansion of the form
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where the functions f11 and f12 are defined as

f11(ξ, α) = (1 + ξ)α−2 [(α− 1)(γ + ψ(α))− α] , (7a)

f12(ξ, α) = (1− ξ)α−2 [(α− 1)(γ + ψ(α))− α] (7b)

with ψ(·) being the digamma function and γ ' 0.577216 is Euler’s constant. Notice that
as β → 0, we recover the “classical” local elasticity equation of Perkins and Kern (in our
scaling, Π = Ω). A plot of (6) is shown in Fig. 3. To generate this plot, we have used a
“test function” Ω = (1 − ξ2)2/3 (i.e., α = 2/3 and A = 22/3). For comparison, we have
also plotted (dots) the result of a numerical evaluation of (4), which was computed using
the software MathematicaTM ( c° 1988-2000 Wolfram Research, Inc.). The calculations were
performed using β = 0.01. In this plot, the outer expansion has a range of validity of 10β
to 100β from the tip (in the example, 100β corresponds to the fracture inlet, i.e., the center
of the fracture).

Figure 3: Plot of normalized correction |Π − Ω|/β versus normalized distance from the
tip (1 − ξ)/β. Comparison of numerical results (dots) versus outer expansion (solid line).
Results obtained using Ω = (1− ξ2)2/3 and β = 0.01.

4.3 Inner Expansion

If we consider now a point located near one of the fracture tips, i.e., |ξ| > 1−β, we obtain a
different expansion. At this scale the “distance from the tip” 1− ξ (if we consider only the



right tip ξ = 1 for this analysis) becomes smaller than β, and hence the expansion must be
performed using 1− ξ as a small parameter. If we define

Π(ξ;β) = I1(ξ;β) + I2(ξ;β) (8)

expansions for the integrals I1 and I2 can be obtained, given by
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Notice that the first term of (9a) represents the known plane-strain pressure singularity
for Ω ∼ A(1−ξ)α, multiplied by the parameter β. This is the only term of the expansion that
is singular in 1−ξ, and thus it is expected that this singularity should dominate the behavior
of Π as ξ → 1. A plot of (8) is shown in Fig. 4. Again, this plot was obtained by using a “test
function” Ω = (1−ξ2)2/3 and β = 0.01. The plot shows the normalized correction |Π−Ω|/β
versus the normalized distance from the right tip (1− ξ)/β. A numerical evaluation of (4)
using the software MathematicaTM has also been included for comparison. Notice that the
inner expansion is valid starting at approximately 10−2β. We have also plotted the first term
of the expansion β π cotπα (1−ξ)α−1 (dashed line), which corresponds to the “plane-strain”
pressure singularity (Desroches et al. [6]). It is evident that the solution converges towards
this term for (1− ξ) . 10−4β.

Figure 4: Plot of normalized correction |Π − Ω|/β versus normalized distance from the
tip (1 − ξ)/β. Comparison of numerical results (dots) versus inner expansion (solid line).
The dashed line corresponds to the first term of the expansion. Results obtained using
Ω = (1− ξ2)2/3 and β = 0.01.

5 CONCLUSIONS

1. A consistent formulation of a non-local elasticity equation for a PKN-type fracture has
been introduced. This equation reduces to the “classical” local elasticity equation of the



PKN model when the aspect ratio of the fracture β = H/c becomes vanishingly small.
We have also obtained the correction terms up to order O(β2).

2. The near-tip asymptotic analysis of the proposed elasticity equation reveals the presence
of a relatively small region at the fracture tip, in which fracture opening and pressure
are related as in a plane-strain fracture. This means that, if we assume a fracture tip
shape of the form (1 ∓ ξ)α, pressure singularities of the form (1 ∓ ξ)α−1 are observed
near the tip.

3. The near-tip pressure singularity indicates that coupling of the new elasticity equation
with the rest of the equations of the PKN model (the lubrication and volume balance
equations) should yield tip asymptotics similar to those obtained by others in the plane-
strain case (Desroches et al. [6]; Lenoach [7]; Detournay et al. [8]). Hence, this formu-
lation introduces the possibility of adding other parameters to the PKN model, such as
rock toughness, leak-off, fluid lag, and distance to a free surface, in a rigorous manner.

4. As the outer solution should correspond to the “classical” PKN solution (which predicts a
regular pressure at the tip), and knowing that the resultant inner behavior of the pressure
at the tip is singular, a boundary layer (whose thickness has yet to be determined)
should form at the tip region. The thickness of this boundary layer should determine the
relevance of the pressure singularity in fracture propagation.

5. Some of the approximations of the “classical” PKN model that have been kept for this
analysis (such as the constant pressure, elliptical shape assumption, and the approxima-
tion of the fracture tip as a “sharp front” without any roundness) should still be validated
(using numerical models) and compared against the predictions of the proposed model.
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