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ABSTRACT 

Continuum damage models are widely used to represent the development of microscopic defects that coalesce 
into a macroscopic crack. The microscopic defects cause a progressive weakening or softening of the material 
(damage). Strain gradient-dependent terms have been included in some damage theories to regularize them, 
and thereby avoid a pathological mesh-dependence in the solution. A strain gradient-dependent damage 
model is considered here for the simulation of this feature in quasi-brittle materials. In the model considered, 
the damage parameter depends upon a regularized equivalent strain. The regularization is introduced through 
a dependency on the Laplacian of an equivalent strain measure. The introduction of the Laplacian of the 
strain leads to numerical difficulties as the governing differential equations are fourth-order, and additional 
boundary conditions must be specified. The application of such a model in a standard finite element 
framework requires C1 continuity of the shape functions. Here, a continuous/discontinuous mixed Galerkin 
method is presented which avoids the need for high-order continuity. The formulation allows the use of C0 or 
C-1 interpolations for the regularized strain field and a C0 interpolation of the displacement field.  Numerical 
examples are presented to validate the formulation in one and two dimensions. Several interpolations are 
tested extensively in one dimension in order to provide guidance for the most appropriate formulations in two 
dimensions. The formulation is applied to crack propagation in a three-point bending test, with the computed 
result being independent of the discretization. 

 
1 INTRODUCTION 

In damage mechanics, a quantity is introduced in the constitutive model which provides a measure 
of material degradation. Damage degradation can be manifest in a progressive softening of the 
material. Classical continuum model cannot capture this phenomenon. Regularized continuum 
models (in particular gradient theories) have been introduced to model softening phenomena. The 
development of gradient models has however been hindered by the lack of a robust numerical 
framework. The solution of gradient-dependent continuum problems usually demands a high 
degree of continuity of the shape functions. Finite element methods with these requirements are 
expensive in 2D and possibly intractable in 3D. To avoid these problems a reformulation into an 
implicit gradient form was introduced by Peerlings et al. [1].  
Strain gradient-dependent problems can be treated in light of the recent development in 
discontinuous and continuous/discontinuous Galerkin methods (Arnold et al. [2], Engel et al. [3]). 
The advantage of this class of methods is the possibility to use C0 interpolation functions for the 
displacement, even for continuum theories involving higher-order gradients. Continuity 
requirements are relaxed and weakly imposed through the addition of weighted residual terms. The 
formulation is validated through numerical examples in one and two dimensions.  
 
 



2 FORMULATION OF THE PROBLEM 
Consider a body dΩ ⊂ � , with boundary Γ , where d is the spatial dimension. The outward 
normal to Γ is denoted n. The governing equations are: 
∇ ⋅ = 0σ  in Ω ,                     (1)   

⋅ =σ n h  on hΓ                                   (2) 

=u g on gΓ                     (3) 

where ∇  is the gradient operator,σ  is the stress tensor, h is the prescribed traction on hΓ  and g 

is the prescribed displacement on gΓ . The partition of the boundary is such that 

Γ=Γ∪Γ gh and h gΓ ∩ Γ = ∅ . 
For the considered damage model, the constitutive equation is given by: 

(1 ) : sω= − ∇σ C u ,                  (4) 

where C is the elasticity tensor, ( )s∇ ⋅  is the symmetric gradient of ( )⋅ , andω  is the damage 
parameter, which is a function of a history parameter k, which in turn is related to the regularized 
equivalent strain measureε  through the Kuhn-Tucker relations. For a strain-gradient dependent 
damage model, a dependence on strain gradient is introduced (Peerlings et al. [1]): 

eqeq c εεε ∆+= 2 ,                  (5) 

where eqε  is an invariant of the local strain tensor, ∆  is the Laplacian operator and c is an intrinsic 
(material) length scale. 
The introduction of the second gradient of the deformation in the constitutive relation leads to a 
fourth-order differential equation in the damaged zone, which implies additional conditions at the 
interfaces between damaged and undamaged zones. These conditions are provided by continuity 
requirements if the damaged zone is inside the domain Ω , while additional boundary conditions 
must be introduced if the damaged zone reaches the external boundary Γ . 
 

3 GALERKIN FORMULATION 
Before proceeding with the Galerkin formulation, it is necessary to first establish some definitions. 

The domain Ω  is divided into closed finite elements eΩ  such that: 

�
nel

e
e

1=

Ω=Ω ,                   (6) 

where nel is the number of elements. A domain Ω~  is also defined such that it does not include 
element boundaries, 
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It is also useful to define the interior boundary Γ~ , 
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Γ = Γ� � ,                   (8) 

where iΓ  is the ith interior element boundary and bn is the number of internal inter-element 
boundaries. 



Before proceeding with the Galerkin formulation of the damage problem, the following finite 
dimensional function spaces are introduced: 
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Here, kP  is the space of polynomials of order k, 1H  and 2L are the usual Hilbert spaces. Note that 

the spaces hS and hV correspond to the usual, C 0 continuous finite element shape functions.  The 

space hW contains functions which are discontinuous across element boundaries. A 
continuous/discontinuous Galerkin formulation, which allows the solution of the damage problem 
using the function space reported in eqns. (9-11), given by Wells et al. [4], is: 
find h h∈w S and h hε ∈W such that 
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where 1α  is a penalty-like parameter related to the stabilizing term, 2α is a penalty term for weakly 

enforcing a non-standard boundary condition, he is a measure of element size, and ⋅� �  and ⋅  
denote the jump and average operator, respectively. Adopting the notation from Arnold et al. [4], 
the jump operator and the average operator are given by:  
 1 1 2 2a a n a n= ⋅ + ⋅� � ,                (14) 

1 2

2
a aa +

= .                 (15)   

Eqns (12) and (13) constitute a mixed formulation, with hε and hu being interpolated separately. It 
can be proven through the application of integration by parts to eqns. (12) and  (13) that the 
proposed weak form is consistent with the original PDE (see Wells et al. [4] for details). 
 

4 NUMERICAL APPLICATIONS 
Strain localization in a tensile test on a tapered bar, shown in Figure 1, has been studied with 
several interpolations (Molari [5]). The commonly used damage law  
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is considered with k0=0.0001 and kc=0.0125. The other data are: Young’s modulus 
420 10E = × MPa, length scale c=1mm. The different elements are called Pk/Pj(Ci) where Pk and 

Pj are the polynomial of order k and j which interpolate the displacement and the regularized strain 
measure, respectively. This latter interpolation can be continuous or discontinuous which is 
indicated by the index i. In the examples shown in the following, 1 1α = . 
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Figure 1: A tapered bar. 
 

In Figure 2, the load-displacement responses for two different discontinuous element types are 
shown for various discretizations. For both elements, the response converges upon refinement. 
Figure 3 shows the load-displacement response for continuous elements. Once again, the results 
converge. In Figures 2 and 3 the reference for comparison is the solution obtained with the 
P3/P2(C0) interpolation and 200 elements. 
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Figure 2: Load displacement responses for (a) P1/P0(C -1) and (b) P2/P1(C -1) elements for various 
discretizations. 
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Figure 3: Load displacement response for (a) P2/P1(C0) and (b) P3/P2(C0) for various 

discretizations. 
 

From the one-dimensional analysis, some guidance can be derived as to the most appropriate 
formulation in two dimensions. It appears that the P2/P1(C0) element provides the best compromise 
of simplicity and efficiency. It is therefore chosen for further examination in two dimensions, 
using a triangular element as the base. For the two dimensional tests, a three-point bending 
specimen is considered  (see Figure 4). For this case, the damage law in eqn. (16) is adopted and 
the following material properties are adopted: Young’s modulus 420 10E = × MPa, Poisson’s ratio  
ν =0, k0=0.0001, kc=0.0125 and c=0.08mm. The equivalent strain measure is defined as:  

( )eq trε = ε .                 (17) 
While not particularly realistic, this definition makes linearization of the method relatively simple. 

 
 

Figure 4: Three-point bending specimen. 
 

The damage contours for two meshes are shown in Figure 5. For both meshes the contours are 
very close indicating objectivity with respect to the discretization. For this problem the discussion 
related to the higher-order boundary condition is lengthy. The interested reader is referred to Wells 
et al. [6]. 



 
Figure 5: Damage contour for two different meshes. 

 
5 CONCLUSIONS 

A mixed continuous/discontinuous Galerkin formulation has been presented for the solution of a 
strain gradient-dependent damage model. The formulation allows the use of C0 or even C -1 basis 
functions in situations where classically a C1 basis functions is required. The formulation was 
tested in one dimension for various element types and different discretizations. In all cases the 
formulation converged. The formulation was also tested in two-dimensions using the P2/P1(C0) 
triangular element, through the simulation of failure in a three-point bending specimen. For the 
two-dimensional test, the simulation showed no pathological mesh dependency. 
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