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Abstract 

This paper describes the relationship between Vickers hardness and elastic-plastic material constants by using 
finite element analyses.  Finite element analyses for Vickers hardness were carried out for studying the effects of 
friction and elastic-plastic material constants on the hardness.  A new equation for predicting Vickers hardness 
was proposed as a function of yield stress and strain hardening coefficient and exponent.  The fatigue limit and 
threshold of stress intensity factor were discussed in relation to the elastic-plastic material constants based on the 
proposed equation.   

 
1 Introduction 

Hardness testing has been most frequently used material testing and has been understood as a testing to 
measure the resistance to compressive permanent deformation (Taber [1]).   Hardness was 
investigated systematically in experiments using different materials (Yoshizawa[2]).  However, 
inelastic material constants have been considered to have a close connection with hardness but a 
quantitative relationship between the constants and hardness has not been well understood.      
Recent progress of contact finite element (FE) analyses enabled the numerical analysis of hardness 
(Karl et al. [3], Talijat et al. [4], Wang et al. [5] and Murakami et al. [6]).  FE analyses have the 
advantage of examining the effect of an inelastic material constant on the hardness keeping the other 
material constants fixed.  
The authors studied the quantitative relationship between the hardness and elastic-plastic material 
constants using FE analyses for Brinell (Hamada et al. [7]), and Rockwell A (Hamada et al. [8]), B 
(Hamada et al. [9]) and C (Hirano et al. [10]) scale hardnesses.  In these studies, the quantitative 
relationships between the hardness and elastic-plastic material constants that characterize the inelastic 
deformation were proposed.   



This paper studies the relationship between Vickers hardness ( ) and the elastic-plastic material 
constants by using FE analyses.  Finite element contact analyses were carried out for various yield 
stresses, strain hardening coefficients and exponents.  Based on the quantitative relationship between 

and these material constants, an equation for predicting the hardness from the material constants 
will be proposed.  The accuracy of the equation will be discussed by comparing the hardness between 
the prediction, FE analysis and experimental results.  The influence of the material constants on 
fatigue limit and threshold of stress intensity factor will be discussed based on the derived equation.   
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2.  Finite Element Model 

Figure 1 shows FE meshes used in this study to simulate Vickers hardness.   A quarter part of a 
whole model was meshed from the symmetry of the 
model.  The indenter was composed of steel holder 
and diamond tip with a flank angle of 136 degrees.  
The numbers of nodes and elements of the mesh are 
5353 and 4325, respectively. 
MARC K7 was used as a FE code and MENTAT Ⅲ 
as a pre- and post-processor.  True stress-logarithmic 
strain relationships were used in the FE analysis with 
the large deformation, update and finite strain options.  
Contact was judged when the indenter approached to 
the specimen in the distance 
less than 1.0×  10-5mm. 

Fig.1 FE models used for FE analyses. 

This study assumed a power 
law-type inelastic constitutive 
equation shown below,  
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where εp, σ, σ y, A, and n are 
plastic strain, flow stress, yield 
stress and strain hardening 
coefficient and exponent, 
respectively.  In FE analyses, 
the load applied to an indenter 
was increased to the maximum valu
testing as defined in JIS and ISO sta
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Vickers hardness was calculated from the diagonal distance (d), after complete unloading using Eq.(2), 
where  is the maximum applied load.   F
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Figure 2 compares Vickers hardness between the FE analysis and experiment for the eight materials 
shown in the figure.  The difference of the hardness between the FE analysis and experiment is small 
so that the FE analyses used in this study accurately simulate the Vickers hardness.   

 
3.2 Relationship between Vickers hardness and inelastic material constants 
Figures 3 shows the relationship between Vickers hardness and strain hardening coefficient for the 
material constants shown in the figure.  is equated with strain hardening coefficient as, HV

βα += AHV                                (3)                     

where α  and β  are the gradient and intercept of the line in the figure.  Since α  in Eq.(3) is a 
function of A  and , Fig.4 shows the relationship between n α  and n  for various A ’s.  The 
ordinate in Fig.4 is modified with A  to obtain a unique relationship against .   n
The line in the figure is expressed by,  

)525.210810.1(886.5499.4 42 +×−+−= − Annα                                 (4) 

Eq.(3) is expressed as a function of σy independent of  as, n

123701.2 += yσβ                                                      (5) 

Substitution Eqs.(4) and (5) into Eq.(3) gives the relationship between the Vickers hardness and the 
inelastic material constants as, 
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                       A:MPa, σy:MPa                           

 Fig.3 Variation of Vickers hardness with strain
 hardening coefficient.  

E=206GPa, σy=196MPa, n=0.3
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Figure 5 compares the Vickers hardnesses predicted by Eq.(6) with the FE results.  Also, the 
hardnesses of the eight materials obtained in experiments are dotted in the figure of which the 
predicted values were calculated using Eq.(6) from their material constants.  All the hardnesses 
predicted agree well with the FE and experimental results within a small scatter.  Equation (6) also 
indicates that how yield stress and strain hardening coefficient and exponent influence  value 
quantitatively. 
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3.3 Relationship between threshold of stress 
intensity factor (∆Kth), fatigue limit (σw) and 
Vickers hardness 
The relationship between σw, ∆Kth and the 
inelastic material constants are expressed by 
the following equations for low hardness and 
high hardness steels (Murakami et al., [11]). 

Low hardness steels  )MPa3923HV( ≤
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where the sarea)(  and iarea)(  are the area o
inclusion at near specimen surface and in 
specimen, respectively. 

 

HVPre=(4.499n2-5.886n+(-1.81*10-4A+2.525))A+2.701σy+123

Figures 6 represents the influence of yield stress σ
on σw calculated by Eq.(7) for low hardness steel
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Fig.7 Influence of the material constants on the fatigue limit for high hardness steels. 
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Fig.8 Influence of material constants on the threshold of stress intensity factor for  
 high hardness steels. 

steels calculated by Eqs.(8) and (9).  Open circles in the figures show the fatigue limit with a defect 
near in specimen surface and solid circles that with a defect in a specimen.  The fatigue limit linearly 
increases with increasing σ y and A , but it decreases with increasing  for both types of defects.  
In all the cases shown Figs.7(a), (b) and (c), the defect near specimen surface is more detrimental to the 
fatigue limit than that inside specimen.  Comparing the results in Fig.7 to those in Fig.6, the fatigue 
limit of the low hardness steels shown Fig.6 only depends on yield stress but that of high hardness 
steels in Fig.7 depends not only on yield stress but also on strain hardening coefficient and exponent.  
This indicates that harder steels are more sensitive to defects than softer steels in the sense that the 
fatigue limit of softer steels is influenced by only yield stress but that of harder steels depends on the 
shape of stress-strain curve.    

n

The threshold of stress intensity factor calculated by Eqs.(10) and (11) is shown in Fig.8.  ∆Kth 
significantly increases with increasing σ y but slightly increases with increasing .  On the other 
hand, ∆Kth decreases with increasing .  ∆Kth for the defect near specimen surface is larger than that 
for inside defect.  These figures show that the most influential material constant on ∆Kth is yield 
stress.  That indicates that yield stress most contributes to the energy absorption due to crack 
extension.  
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n

 
 Conclusions 

(1) The Vickers hardness of the eight materials obtained from finite element analysis agreed to the 



experimental results within 10% difference.   
(2) An equation to predict Vickers hardness was proposed as a function of yield stress (σ y), strain 

hardening coefficient ( A ) and exponent ( n ), 

HV = α A +β 

α = 4.499n2 –5.886n + (–1.810 x 10–4A+2.525)  
β =2.701σ y + 123 

 (3) The fatigue limit of soft materials only increased with the increase of yield stress but it did not 
depend on strain hardening coefficient and exponent.  The fatigue limit of hard materials 
increased with the increase of yield stress and strain hardening coefficient but it slightly 
decreased with increasing strain hardening exponent.  The threshold of stress intensity factor of 
hard materials increased with increasing yield stress and strain hardening coefficient but it 
decreased with increasing strain hardening exponent. 
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