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ABSTRACT

An irregular lattice model is developed to simulate fracture in softening materials with multiphase
mesostructure. Lattice elements are defined on the edges of the Delaunay tessellation of an irregular set of
points positioned in the material domain. The dual Voronoi tessellation is used to scale the elemental stiffness
terms, in a manner that renders the lattice model elastically homogeneous. A cohesive description of fracture
is introduced to obtain energy conserving, grid-insensitive descriptions of cracking in homogeneous
materials. These fundamental, essential requirements of the model are verified, in preparation for simulating
fracture in multiphase particulate materials, such as cement-based composites.

1 INTRODUCTION
Lattice models are composed of simple, one-dimensional mechanical elements connected on a set
of nodal points that is either regularly or irregularly distributed in space. The primary justification
for such models comes from the discontinuous structure of matter at a very small scale, where
material can be regarded as a collection of particles held in equilibrium through forces of
interaction. Lattice models are also useful in studying the behavior of various materials at coarser
length scales, with interest in the effects of disorder and breakdown under loading [1-5].

Some fundamental aspects of lattice models are most evident when studying their abilities to
represent a homogeneous continuum. For this reason, the lattice model presented in this paper is
first applied toward modeling the elasticity and fracture of homogeneous materials. The lattice
model, which is based on the concept of a Rigid-Body-Spring Network (RBSN) [6,7], is elastically
homogeneous under simple modes of straining and provides grid insensitive representations of
fracture in softening materials. These results serve as a starting point for modeling fracture in
multiphase particulate materials.

2 IRREGULAR LATTICE MODEL
2.1 Domain discretization and lattice element description

Connectivity of the lattice elements is defined by the Delaunay tessellation of an irregular set of
points, which are distributed within the material domain (Fig. 1). These points act as the lattice
sites or nodes. The Voronoi diagram, of the same point set, partitions the domain into a collection
of cells, each of which is a convex polyhedron. The geometry of the cell facets serves to define the
elastic and fracture properties of the lattice elements.

Lattice element ij is composed of a zero-size spring set, located at the area centroid (point C) of
the Voronoi facet common to nodes i and j, and rigid arm constraints that link the spring set with
the nodal degrees of freedom (Fig. 2a). This concept of a rigid-body-spring model was first
developed by Kawai [8]. In this three-dimensional setting, each node has three translational and
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Figure 1 — Lattice model construction sequence: a) irregular point set; b) Delaunay tessellation;
and c¢) Voronoi diagram

three rotational degrees of freedom. The spring set (not portrayed in the figure) consists of three
uniaxial springs, oriented normal and tangential to the facet, and three rotational springs about the
same local axes. The uniaxial and rotational springs are assigned stiffness coefficients:
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where A4;; is the facet area; 4;; is the element length; E is the elastic modulus; J, is the polar
moment of inertia; and /;; and I, are the two principal moments of inertia of the facet area.

2.2 Fracture model

The RBSN modeling of fracture is based on the crack band concept of Bazant and Oh [9]. In
general, loading of an element will be skew to the element axis ij. The normal and tangential
springs are activated and, for tensile loading of the material, the normal spring will be in tension
(Fig. 2b). The fracture criterion is based on the following measure of stress
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where Fy is the resultant of the spring forces acting on the element facet and 4", ;7 1s the projection
of the facet area on a plane perpendicular to the direction of Fp (Fig. 2b). Within each
computational cycle, the ratio or/o(w) is computed for all of the elements, where the cohesive
stress o(w) is a bilinear function of the crack opening displacement w (Fig. 2¢). A prismatic crack
band develops within the element with max(og/o(w)) > 1. The width of this crack band is 4; cos0,
where 0 is the angle between the facet normal and the resultant force Fj. Crack opening
displacement is related to the fracture strain &z over the crack band:
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For a critical element, fracture involves an isotropic reduction of the spring stiffnesses and an
associated release of spring forces, so that o follows the material softening relation. The release
of spring forces causes an imbalance between the external and internal nodal force vectors, which
is corrected through conventional equilibrium iterations. A maximum of one element spring set is
modified per iteration cycle, as is common for lattice models [1]. The modeling of fracture differs
from that of conventional lattice models in several respects: 1) fracture can form at angle 6 to the
element axis; and 2) element breaking is a gradual process that conserves energy in association
with a cohesive softening relation.
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Figure 2: a) Lattice element ij; b) resultant force on element facet; and c) cohesive crack relation

3 MODELING FRACTURE OF HOMOGENEOUS MATERIALS

Some basic properties of lattice models are evident when studying their application to modeling
the elasticity and fracture of homogeneous materials. Consider a rectangular prism of
homogeneous material under uniaxial tensile loading. The prism has cross-section area 4 and
tension softening properties as shown in Fig. 2c. Prior to cracking or other nonlinear behavior, the
axial displacement of any point in the prism is u = X, where X is the position of the point in the
direction of the prism axis and ¢ is the axial strain, which is constant over the prism length. Figure
3a shows an irregular lattice model of the prism, where the nodes associated with the +X and —X
faces of the Voronoi diagram have been assigned displacement the boundary condition u = &X.
The model strains uniformly, so that the unconstrained nodes within the midsection of the model
displace accordingly, with relative error e, = 7.02x10'8 where
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Displacement u" is the numerical solution and N is the number of unconstrained lattice nodes. The
small relative error indicates the irregular lattice, based on the Voronoi scaling of the stiffness
coefficients given in eqn (1), provides an elastically homogeneous representation of the material
for this simple mode of straining. The stress o is uniform throughout the specimen model and, for
increasing axial load, reaches the tensile strength f; in all elements simultaneously. A small
reduction of the tensile strength value in any one element initiates fracture within that element.

From the point of fracture initiation, fracture propagates through the cross-section and the
material separates (Fig. 3b). In Fig. 3c, average stress o and axial displacement § have been
normalized to better indicate that the cohesive softening curve, used as input to the model, is
manifested at the structural scale. The separation process involves only two nodes per element;
this facilitates the transition from continuous to discontinuous behavior and avoids significant
stress locking.

If the crack band is constrained to form normal to the element axis ( 0y criterion), as would be
the case for a central force spring lattice, the model response is not a direct reflection of the
softening curve. There are two main sources of error: 1) the magnitude of the stress component
aligned with the element axis, oy, is less than the average axial stress 0 = P/4, unless the element
is aligned with the direction of tensile loading; and 2) after fracture initiation, the component of
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Figure 3 - Uniaxial tension test simulation: a) uniform straining; b) traction free crack condition;
and c) load-displacement response curves

crack opening in the direction of the element axis is smaller than that in the direction of loading.
These two sources of error combine to produce excess strength and energy consumption, as seen
in Fig. 3¢, which can be viewed as a form of stress locking. Even for the classical lattice approach
(where element softening is not considered), the first of these sources of error would still be
present. A third source of error involves the possible use of non-Voronoi scaling of the stiffness
terms. If each of the lattice elements is assigned a cor}?tant area, then the relative error in
displacement expressed by eqn (4) becomes e, = 1.83x10 . In general, irregular lattices exhibit
this type of artificial heterogeneity [10], which can strongly affect the modeling of fracture. Under
this condition, fracture initiates in the model well below the load level given by o = f;.

4 MULTIPHASE MATERIALS - MODELING ISSUES

At the mesoscale of cement based composites, for example, three phases are evident: a mortar
matrix, aggregate inclusions, and the matrix-inclusion interface. In the lattice modeling of such
multiphase materials, the common approach is to map the material mesostructure, or its statistical
equivalent, onto the lattice so that each element is associated with a particular material phase [2,5].
The matrix and inclusion phases are often assumed to be homogeneous and isotropic, so that the
results of the previous section are directly applicable; the lattice representation of the interface is
generally coarse and should have directional properties to reflect local material structure.

Stress distributions around the inclusions are significantly influenced by Poisson ratio effects,
particularly when there is a strong mismatch in the elastic properties of the inclusion and matrix
phases [7]. Due to the one-dimensional nature of lattice elements, lattice models are at a
disadvantage in modeling Poisson effects. A limited range of macroscopic Poisson ratio can be
modeled by the regular arrangement of lattice elements or the adjustment of element stiffness
coefficients, but a local realization of Poisson effect is not obtained. The RBSN is able to model a
range of Poisson ratio, but at the expense of introducing artificial heterogeneity into the material
model. An alternative hybrid approach, which combines the RBSN and finite element technology,
has been developed to exactly model both elastic constants [7], although the modeling of fracture
becomes more complicated. Figure 4 compares experimental and numerical crack patterns
developed in a mortar panel with a stiff cylindrical inclusion. In the experimental program [11],
the specimen was subjected to uniaxial compression by displacement controlled loading, with
minimal lateral restraint due to the load platen surfaces. The failure pattern observed during testing
was measured using Digital Image Correlation (DIC), which provides high-resolution mappings of



a) b) | |
Figure 4 — Vertical splitting of mortar panel with stiff inclusion: a) localization of surface
displacements measured using Digital Image Correlation [11]; and b) planar lattice simulation

specimen surface displacements. In Fig. 4a, only the closely spaced contour lines, indicating
surface displacement localization, are shown. In the lattice model of the specimen, fracture
initiated along the weak interface and ultimately exhibits a pattern similar to that witnessed during
testing, including the shear cones that develop above and below the stiff inclusion.

Softening at the macroscale is the result of various toughening mechanisms active in the
fracture process zone, which extends over a finite volume of the mesostructure. Such toughening
mechanisms were first demonstrated with planar lattice models [2]. However, it is clear that three-
dimensional models are necessary for realistic modeling of both the material structure and the
toughening mechanisms [4,5]. At the mesoscale, fracture events are thought to be brittle, so that
the conventional lattice approach (in which fractured elements are removed from the lattice) is
applicable. However, most of the modeling issues discussed in section 3 are still relevant.

With adequate resolution of the = mesostructure model, various phenomena can be simulated,
including those related to the geometry and distribution of the phases. For simulations where the
crack direction is known in advance, a finer mesh can be used in that region (Fig. 5). However, the
degree of model refinement is limited by several factors, including available computing resources
and our abilities to measure properties at small scales.

5 CONCLUSION

This paper examines the performance of an irregular lattice model for arguably the most basic of
material types and loading conditions: isotropic, homogeneous materials subjected to uniaxial
tensile loading. Nonetheless, the fundamental properties of lattice models are most evident under
such conditions. For the lattice model described here, the scaling of element stiffness terms is
based on a Voronoi discretization of the material domain and provides an elastically uniform
description of the material under uniform modes of straining. The energy dissipation mechanisms
active at finer scales are lumped into a macroscopic cohesive crack relation. In contrast to
classical lattice models, element breaking is gradual and governed by rules that provide an energy
conserving representation of fracture through the irregular lattice. The objective representation of
fracture in homogeneous materials is prerequisite for modeling fracture of multiphase particulate
materials, which is ongoing work of the authors.



Figure 5: a) Three point bend test of notched concrete beam; b) modeling of spherical inclusions
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