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ABSTRACT
We present a formulation for coupling atomistic and continuum mechanical simulation methods for qua-

sistatic analysis. The formulation assumes a finite element mesh covers all parts of the computational domain,
while atomistic crystals are introduced only in regions of interest. Moreover, the formulation allows the ge-
ometry of the mesh and crystal to overlap arbitrarily. Our approach uses interpolation and projection operators
to link the kinematics of each region, which result in a system potential energy from which we derive coupled
equilibrium equations. A hyperelastic finite element formulation is used to compute the deformation of the
defect-free continuum using the Cauchy-Born rule. A correction to the Cauchy-Born rule model is introduced
in the overlap region to minimize fictitious boundary effects. Key features of our approach will be demonstrated
with simulations in 1- and 2-dimensions.

1 INTRODUCTION

The rationale to construct and use a coupled atomistic-continuum simulation approach is straightfor-
ward to comprehend in this age of materials modeling. While continuum material models are evolv-
ing to include more physical bases, they can only reproduce anticipated deformation phenomena. In
contrast, atomistic simulation, by its use of simple interatomic potentials, has the ability to display
competing mechanisms of material deformation, such as fracture and dislocation nucleation and
propagation, although limits of computational power prohibit analysis of micro-scale systems, even
for large-scale, parallel calculations. Early work by Kohlhoff and collaborators [1] created a method-
ology that combines finite element (FE) analysis with atomistic modeling. More recently, several
methods have been introduced, including the Quasicontinuum method by Tadmor, Ortiz and Phillips
[2] , Coarse-Grained Molecular Dynamics by Rudd and Broughton [3], Molecular-Atomistic-Ab
Initio Dynamics by Broughton, Abraham, Bernstein and Kaxiras [4], and the Bridging Scale method
by Wagner and Liu [5]. These coupling methods have been used successfully to simulate phenomena
such as crack-grain boundary interactions, dislocation nucleation from nanoindentation and the dy-
namic fracture of silicon. However, the weaknesses of these methods show that more consideration
is needed in developing a coupled atomistic-continuum approach. Specifically, a rigorous method-
ology for partitioning potential energy between atomistic bonds and continuum strain energy within
the overlapping regions needs to be developed.

In this paper, we describe a formulation for atomistic-to-finite element coupling for quasistatic
simulation. The formulation covers all parts of the computational domain with a FE mesh, while
introducing atomistic crystals only in regions of interest. The goal of the formulation is to allow the
geometry of the mesh and crystal to overlap arbitrarily. A hyperelastic finite element formulation
is used to compute the deformation of the defect-free continuum using the Cauchy-Born rule[6],
supplemented with a correction used in the overlap region to minimize fictitious boundary effects.
Key features of our approach will be demonstrated with simulations in 1- and 2-dimensions.



2 KINEMATICS

The coupled atomistic-continuum system is shown in Figure 1. A FE mesh covers all parts of the
computational domain, while only limited regions of interest, such as crack tips or other defects,
are also covered with an atomic crystal. Let the atomistic displacements in the system be written

Figure 1: Patch of a coupled atomistic-continuum system. The set of FE nodesN is shown as open
squares�. The set of nodeŝN is shown as solid squares�. The set of atomsA is shown as open
circles◦, and the set of atomŝA is shown as solid circles•.

as Q̆ =
[
q(α)

]T
, whereα ∈ Ă, and Ă is the set of all atoms. Let the nodal displacements be

written asŬ =
[
u(a)

]T
, wherea ∈ N̆ , andN̆ is the set of all FE nodes. Greek symbols denote

atom indices, while lower case Roman symbols denote node indices. In order to satisfy continuity
of the displacement field across the atomistic-continuum boundary, the motion of some of the atoms
is prescribed by the continuum displacement field. For simplicity, these atoms are called ”ghost

atoms”. This subset of atomistic displacementsQ̆ will be denoted aŝQ =
[
q(α)

]T
, whereα ∈ Â,

while the complement which contains the unprescribed atomistic displacements (for free atoms)

will be denoted asQ =
[
q(α)

]T
, whereα ∈ A, Â ∪ A = Ă and Â ∩ A = ∅. Analogously,

the motion of some FE nodes is prescribed by the underlying lattice. These displacements will be

denoted aŝU =
[
u(a)

]T
, wherea ∈ N̂ , and the unprescribed nodal displacements will be denoted

asU =
[
u(a)

]T
, wherea ∈ N , N̂ ∪N = N̆ , andN̂ ∩N = ∅. One can interpolate the continuum

displacement field to the location of any atom asu(X(α)) =
∑

a∈N̆ N(a)(X(α)) u(a), whereX(α) is
the undeformed position of atomα andN(a) is the FE shape function associated with nodea. The
FE shape functions typically have compact support, so the sum shown above involves only the nodes
whose support includesX(α). Generally, one can consider the atomistic and continuum displacement
fields to be related as {

Q
Q̂

}
= N

{
U
Û

}
+

{
Q′

0

}
, (1)

where

N =

[
NQU NQÛ
NQ̂U NQ̂Û

]
. (2)

The sub-matricies ofN contain shape functions as defined by the interpolation stated above. By
definition,NQU = 0 sinceQ andU are independent. In (1),Q′ represents the portion of the atomic



displacements that cannot be represented on an (assumingly) coarser FE mesh through the shape
functionsNQÛ.

We can solve these coupled equations for the dependent quantitiesQ̂ andÛ by minimizing the
errore ≡ Q′T Q′, as is done in [5]. Klein and Zimmerman[7] have shown that a moving least squares
(MLS) interpolation can be substituted for the projection operation, yielding the solutions

Û = ÑÛQQ, (3)

and
Q̂ = NQ̂UU + NQ̂ÛÑÛQQ, (4)

whereÑÛQ is the matrix of shape functions derived from the MLS interpolation. Notice that the
prescribed atomistic displacements depend on both the displacements of the free FE nodes and on
the displacements of the free atoms through the projection of those displacements onto the FE mesh.

3 EQUILIBRIUM EQUATIONS

To solve for these unprescribed displacementsQ andU, we develop equilibrium equations derived
by formulating the total potential energy of the entire coupled atomistic-continuum system. We
express the potential energy of the coupled system as

5(Q, U) = 5Q(Q, Q̂(Q, U)) + 5U(U, Û(Q)) − FQ · Q − FU · U, (5)

where5Q represents the potential energy in the bonds of the crystal and depends only onQ andQ̂,
5U is the strain energy density integrated over the continuum and depends only onU andÛ, and
FQ andFU are external forces acting on the atoms and FE nodes, respectively. The equations of
static equilibrium are derived from the total potential and when combined with (3) and (4) can be
expressed as

RQ =
∂5Q

∂Q
+

[
∂5U

∂Û
+

∂5Q

∂Q̂
NQ̂Û

]
ÑÛQ − FQ = 0, (6)

RU =
∂5U

∂U
+

∂5Q

∂Q̂
NQ̂U − FU = 0, (7)

4 CORRECTION TO THE CAUCHY-BORN RULE

The previous sections describe how atomistic and continuum degrees of freedom are coupled; how-
ever, the specific form of the total potential has not yet been given. Naturally, the atomistic con-
tribution to the potential energy is computed from a sum of bond energies in the crystal. The con-
tinuum strain energy is computed using the Cauchy-Born rule, which accurately describes the long
wavelength behavior of the lattice. One important detail is how one corrects for the overlap of the
continuum and the underlying crystal. Within this overlapping region, the weighting of the contri-
butions to potential energy from the bonds and finite elements needs to be determined such that the
total energy for the coupled system is consistent with the result one would obtain from a full crystal,
regardless of the location and orientation of the embedded crystals with respect to the overlaying FE
mesh.

We determine immediately that the weighting of the bonds between free and ghost atoms must
always be 1 to preserve the energy per atom among free atoms, while the weighting of contributions



from elements containing both active nodes and ghost atoms must be compensated to maintain the
correct strain energy density. The approach for introducing weighting into the total potential follows
directly from the Cauchy-Born rule. As presented in [7],5U =

∫
8d�, where8 = 8(C, X) is the

strain energy density. For a crystal subject to pair interactions,8(C, X) =
1
V0

∑nb
i ρ(i )(X) ϕ

(
r(i )

)
,

whereϕ is the interaction potential,r(i ) =
√

R(i ) · C · R(i ), C = FT F, R(i ) is the vector representing
bond(i ) in the undeformed configuration andF is the deformation gradient. The spatially varying
bond density functions, 0≤ ρ(i )(X) ≤ 1, are introduced because some of the energy for bonds
in each orientation is represented in the coupled system by actual bonds between atoms present in
system. In regions of the domain completely covered by the underlying crystal,ρ(i )(X) = 0 since
all bonds are represented at the density of the crystal. Conversely,ρ(i )(X) = 1 over the parts of the
domain without any underlying crystal since the Cauchy-Born strain energy density must account
for all of the potential energy.

As shown in [7], the functionsρ(i )(X) are determined by enforcing a condition of homogeneous
deformation given the appropriate boundary conditions. This is accomplished by minimizing the
fictitious forces on the nodes that influence the overlap region within the coupled system. For a
system governed by pair potentials, we seek to minimize the quantity

min
ρ(i )

1

2

∑
a∈�̃0(i )

(
R(i ) · f(a)

(i )

)2
+

1

2
κ

∫
�̃0(i )

∇ρ(i ) · ∇ρ(i )d�

 , (8)

where

f(a)
(i ) =

∑
β∈�̃

(a)
0(i )

R(β)

(i ) N(a)
(
X(β)

)
+

1

V0
[R ⊗ R](i )

 ∫
S�

(a)
0(i )

∂N(a)

∂X
d� +

∫
�̃

(a)
0(i )

ρ(i )
∂N(a)

∂X
d�

 (9)

represents the force on node (a) due to bond (i ), R(β)

(i ) is the bond vector of type (i ) connecting ghost

atomβ to a free atom, and̃�(a)
0(i ) andS�

(a)
0(i ) are the elemental volumes that support node (a) in which

0 ≤ ρ(i ) ≤ 1 andρ(i ) = 1, respectively. A detailed derivation of (8) and (9) can be found in [7].

5 COUPLING EXAMPLES

5.1 One-dimensional example

Key features of the coupling formulation can be illustrated with a one-dimensional example. Con-
sider the patch of a coupled system shown in Figure 2(a). The patch consists of the complete support
of nodea, which is comprised of two elements of dimensionh, and a single pair bond of lengthR.
The nodal shape function for this case is given by

N(a)(X) =


1 −

X(a)
−X

h X ∈ �̃0,

1 +
X(a)

−X
h X ∈ S�0,

0 elsewhere.

(10)

From (8), we find the optimal bond density must satisfy∫
�̃0

ρd X = h
(
1 − N(a)(X(β))

)
(11)
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Figure 2: (a) Patch from a 1-dimensional coupled system. (b) Displacements of the 1-D coupled
system for both the corrected and uncorrected bond density. Atom and node numbers are shown.

for X(a)
−h ≤ X(β)

≤ X(a)
−h+ R, which holds forρ = 1− N(a)(X(β)) over�̃0. For this example,

we see that the bond density simply compensates for the geometric overlap in the continuum and
the underlying lattice. Figure 2(b) shows the displacements of a coupled system composed of five
nodes and five atoms. The chain of atoms is bound by the quadratic potentialϕ(r ) =

1
2k (r − R)2

acting between nearest neighbors withR =
1
2. From the Cauchy-Born rule, the elements, with

dimensionh = 1, have an initial modulusE = Rk. In addition to the corrected solution that
satisfies homogeneous deformation,ρ(X) =

3
4 for 2 ≤ X ≤ 3, Figure 2(b) also displays the solution

obtained if we prescribeρ(X) = 1 for the overlap element 3—4,i.e. no correction to the Cauchy-
Born rule. This prescription produces inhomogeneous deformation and an increased stiffness in the
overlap region.

5.2 Two-dimensional example

We have performed similar simulations for 2-dimensional systems. Figure 3(a) shows a system com-
posed of a triangular lattice with free surfaces overlapping with a square FE mesh. This geometry is
representative of the cross-section of a nanowire. For the coupled system, the atoms that lie within
the outer layer of elements are free atoms while all other elements contain ghost atoms. When mod-
eled with a 5th nearest neighbor Lennard-Jones interaction, the system relaxes outward as shown in
Figure 3(b). The coupled system (dark grey atoms) can be directly compared with a system simu-
lated purely with atomistics, (light grey atoms). Agreement is very good, but not perfect due to the
severe inhomogenous deformation at the corners and the range of the potential as compared with
few number of real atom layers used in the coupled system.

6 CONCLUSION

We have presented the formulation for an atomistic-to-continuum coupling method for quasistatic
analysis. Our approach is comprised of three components: kinematics, coupled equilibrium equa-
tions and a corrected Cauchy-Born rule. We have presented 1- and 2-dimensional examples that
demonstrate the accuracy of the approach. We will apply this approach to 3-dimensional examples



(a) (b)

Figure 3: (a) A 2-D, triangular lattice with free surfaces composed of free (light grey) and ghost
(dark grey) atoms. (b) The relaxed configuraton of (a) for the coupled system (dark grey) and a
system treated purely with atomistics (light grey). Displacements are magnified by a factor of 200.

of nanowire and nanofilm relaxation and deformation, for which our generalized method is ideally
applicable.
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