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ABSTRACT 

The present paper provides a statistical model to the size effect on grained materials tensile strength and 
fracture energy. It has been already demonstrated by using extreme value theory (Carpinteri et al. [1]) that the 
scaling law obtained for the tensile strength introducing a doubly truncated distribution of flaws, under the 
hypothesis of Weibull’s weakest link, resembles the Multi-Fractal Scaling Law (MFSL), already proposed by 
the first Author through fractal concepts. A recent improvement of the model has been proposed (Carpinteri 
et al. [2]) observing that the weakest link in grained materials is usually represented by the interface between 
the matrix and the grains. Thus, the flaw distribution can be represented by the grain size distribution, 
expressed as a probability density function (PDF) of the grain diameters, rather than by an arbitrary flaw 
distribution. In this work, introducing the size-independent fractal cohesive model and considering 
micromechanical models for the critical displacement wc, we draw a link also between the fracture energy and 
the largest aggregate grain inside the specimen and compute the fracture energy as a function of the specimen 
size. The obtained scaling law is again in substantial agreement with the MFSL for the fracture energy 
proposed by the first Author. A further result provided by the proposed approach is the description of the 
scatter increase of both tensile strength and fracture energy values when testing small specimens. This trend is 
confirmed by experimental data available in the literature. 

 
1  INTRODUCTION 

With size effect we mean the dependence of one or more material parameters on the size of the 
material specimen. It is easy to realize the importance of this topic in engineering design. 
Recently, the scientific community dedicated significant efforts in order to have a consistent 
description of this phenomenon and to highlight the physical mechanisms that lie behind it. 
Dealing specifically with concrete structures, it was seen that tensile strength decreases with the 
structural size, whereas fracture energy increases (Carpinteri [3,4]). In other words, the larger is 
the structure, the more brittle the structural behaviour results to be. 
     Aim of the present paper is to develop a statistical model providing the PDF of grained 
materials tensile strength and fracture energy for specimens of different sizes. Since the interface 
between the matrix and the aggregates is the weakest link, we assume that the PDF of the flaw 
sizes can be realistically represented by the PDF of grain diameters (Carpinteri et al. [2]). Our 
analysis will therefore start with the description of the aggregate grading inside a grained material. 
 

2  STEREOLOGICAL ANALYSIS OF THE GRAIN SIZE DISTRIBUTION FUNCTION 
The basis for the dimensional characterization of the aggregate is the sieve analysis. The sieve 
curve describes the weight fraction W(d) of the aggregate passing through a sieve with d-wide 
mesh. Due to its good packing properties, the most common sieve curve used to prepare concrete 
is the so-called Füller curve: 
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Assuming that the aggregates are spheres with diameter d comprised between φmin and φmax, it can 



be easily shown (Stroeven [5]) that the Füller sieve curve of eqn (1) can be expressed in terms of 
grain size distribution function as follows: 
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where � = φmax/φmin and fd(d) is a probability density function (PDF). Note that the first 
denominator in the previous expression is very close to the unity; nevertheless, differently from 
other approaches (Carpinteri et al. [6]), we cannot neglect it in the following computation since 
that term will be raised to very high exponents.  
     In order to link the concrete volume with the number of grains inside it, we need one more 
parameter, i.e., the volume percentage fa of the aggregates. The total number of particles inside a 
volume V is therefore obtained on average, dividing the total volume of aggregates inside the 
concrete volume by the average grain volume:
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where 3d  is the third moment of the PDF described in eqn (2). 
     Following the procedure outlined by Carpinteri et al. [1], we compute the expression of the 
PDF of the maximum diameter of the N aggregate particles contained within a given volume V, 
defined as: dmax = max{d1,d2,…,dN}. Starting from the hypothesis that the N aggregate diameters 
are i.i.d. variables (independent and identically distributed), the extreme value theory provides the 
PDF of dmax: 
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3  TENSILE STRENGTH 

Now we derive the relation between the strength and the grain number, i.e. the structural size (eqn 
3). As stated in the introduction, we assume that the strength depends on the largest flaw according 
to Weibull’s weakest link hypothesis. Furthermore, we assume that defect interactions are 
negligible and, due to interface weakness, we represent the effect of a spherical particle as that of a 
penny-shaped crack with the same diameter. Hence we can write the ultimate tensile strength as:  
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Eqn (5) states that the tensile strength decreases along with the inverse of the square root of the 
largest grain diameter. The minimum strength is achieved when dmax is equal to φmax and is denoted 
by ft. Thus eqn (5) can be rewritten in nondimensional form:  
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From the previous equation, it is clear that σu is a statistical variable as long as dmax. The PDF of 
σu depends on the PDF of dmax according to the following relationship:   
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Computing the mean value of the PDF given by eqn (7) we obtain the average tensile strength, as a 



function of the number N of grains. In nondimensional form, its final expression is given by: 
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where β=α−2.5 and  
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is the Generalized Incomplete Beta Function. Eqn (9) allows to compute the mean tensile strength 
as a function of the particles number N and of the parameter α. Equivalently, by using eqn (3), it is 
possible to highlight the size-scale effect with respect to the nondimensional structural size (b/t), 
distinguishing the case of two- and three-dimensional scaling. A first important remark is that only 
the ratio α of maximum to minimum aggregate size plays a role, whilst the value of the maximum 
diameter does not affect the function shape. Results are summarized in Fig. 1(a), where the log-log 
plot evidences that both the curves exhibit a similar behaviour, with two ranges. In the lowest one 
the curves decrease with a constant slope, equal to 0.4 and 0.6 for two- and three-dimensional 
scaling, respectively. At the larger scales they present an asymptotic trend towards the unity. From 
a mechanical point of view, this yields an average tensile strength approaching ft for sufficiently 
large sizes. For a comparison of the proposed scaling law with experimental data the interested 
reader is referred to Carpinteri et al. [2]. 
 

4  FRACTURE ENERGY 
In order to obtain the relationship between the fracture energy and the grain number, we start 
analyzing the effect of the largest grain diameter upon the critical displacement wc. The long tail 
usually shown by the cohesive laws of grained materials is due to the bridging action between the 
crack lips exerted by the grains. The larger are the grains, the larger is the distance between the 
lips at which the interaction vanishes. The final part of the softening regime is strictly related to 
the pull out of the largest grains. When a grain is being pulled out from the matrix, interlocking 
between the grain and the matrix supplies the resistance to the separation of the plane. Of course, 
unlike fibre pull out, where the critical separation of the failure plane is just equal to half the 
length of the fibre, the critical distance in grain pull out is much smaller than the aggregate radius, 
as shown by several experiments. 
     To carry on our analysis, we do not need the exact value of the critical distance: it is sufficient 
to know how it varies along with the grain diameter. Although different hypotheses can be 
formulated, we will assume that the critical displacement is proportional to the diameter of the 
largest grain upon fracture surface, since it is the last one to be pulled out: 

max1dkwc =  (10) 
k1 being a material constant. Note that, in analogy with eqn (10), eqn (6) for the tensile strength 
can be rewritten as σu = k2 /�dmax. Again, k2 is a material constant.  
     Assuming that the shape of the cohesive law is size independent, the dependence of the fracture 
energy with respect to dmax is straightforward. In fact, indicating by f the size independent function 
describing the dimensionless cohesive law yields: 

( )cu wwf=σσ  (11) 
Eqn (11) is equivalent to state that the dependence of the cohesive law on the structural size is only 
due to the size dependence of its peak (the tensile strength) and its tail (the critical displacement). 
Observe that this statement is also implicit in the fractal cohesive crack model presented by 
Carpinteri et al. [7]. According to its definition, we can compute the fracture energy from Eq. (11):  



 
Figure 1: Size effect on tensile strength (a) and fracture energy (b) 
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where gF is the value of the integral: it is a dimensionless constant depending on the shape of the 
cohesive law (e.g. equal to 1/2 for a linear cohesive law). Eqn (12) provides the dependence of the 
fracture energy upon the largest grain diameter dmax we were looking for. The same dependence of 
�� upon the largest grain diameter has been proposed on experimental evidence by several authors 
(Wolinski et al. [8], Li et al. [9]), so that the hypothesis stated in eqn (10) is confirmed. Noting that 
in the limit of large specimen size dmax tends to φmax, we can evaluate the ratio of fracture energy 
�� at a generic size to fracture energy ��� for structural size tending to infinity as: 
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From eqn (13) it is clear that the fracture energy �� is a statistical variable as well as dmax (and σu). 
Thus, to evaluate the average fracture energy as a function of the particle number N, we should 
follow a similar procedure to that previously described for the ultimate tensile strength. As a 
result, we obtain the following expression for the nondimensional fracture energy: 
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The nondimensional mean value of the fracture energy can be calculated by eqn (14) as a function 
of the particles number N and of the parameter α. As stated for the ultimate tensile strength, only 
the ratio α between maximum and minimum aggregate size plays a role, whilst the value of the 
maximum diameter does not affect the function shape. Results are summarized in Fig. 1(b) where 
the mean fracture energy is plotted vs. structural size (b/t) for two- and three-dimensional scaling: 
both the curves exhibit a similar behavior. At the smaller scales, the curves increase with a 
constant slope, approximately equal to 0.4 and 0.6 for two- and three-dimensional scaling, 
respectively, whilst at the larger scales they present an asymptotic trend towards the unity. 
     To highlight the true size-scale effect on tensile strength and fracture energy, we linked the 
number N with the considered volume (see eqn (3)), by specifying the volume V in which the 
largest aggregate should be sought. Considering now the size effect of the fracture energy, it could 
be argued that the relation between the grain number and the structural size differs from the one 
used for the tensile strength, since the largest grain must be sought on the fracture surface and not 
inside a given volume V. Nevertheless, the fact that fracture starts from the grain with the largest 
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diameter allows us to assert that the largest grain inside V will belong to the fracture surface. 
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Figure 2: Nondimensional variance of the tensile strength (a) and of the fracture energy (b) 

 
5  INCREASE IN THE STATISTICAL DISPERSION AT THE SMALLER SCALES 

The first moments of the PDFs of the tensile strength and of the fracture energy provide the mean 
values of these quantities. As shown in the previous section, interesting considerations about their 
size effect can be drawn. On the other hand, also the higher order moments of the PDFs provide 
useful information. The second moments represents the variances of the PDFs. They contain 
information about the scattering of the values for different N values, i.e. varying the structural size. 
In fact, computing the variances of both the tensile strength and the fracture energy, we obtain: 
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for the tensile strength and for the fracture energy, respectively. 
The nondimensional variances are plotted in Figs. 2(a) and 2(b) vs. the grain number for different 
values of the ratio. As can be seen, the variances increase diminishing the number of grains, i.e. as 
the structural size decreases. This means that the present model predicts not only a variation of the 
tensile strength and fracture energy values when testing specimens of different sizes, but also a 
wider scatter of the measured data for small sizes. Both these trends are confirmed by several 
experimental results (see, for instance, [10]). Furthermore, note that, in the bi-logarithmic plots in 
Figs 2(a) and 2(b), the slope of the curves for large N values is the same.  
     More information is provided by the graphs in Fig. 3, where the dispersion bands within 33%  
give a clear indication of the asymmetry of the two PDFs given by eqns (8) and (14) as the 
structural scale changes. 
 

6 CONCLUSIONS 
In this paper, we presented a statistical approach to the size scale effects on strength and toughness 
of grained materials. A first important result of the present analysis is the size effect predicted, 
which coincides with the one provided by the MFSLs, thus confirming by another way the 
soundness of the fractal approach to size effect in quasi-brittle materials as proposed by Carpinteri 
and co-workers [3,4,7]. 
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Figure 3: Dispersion bands within 33% probability for tensile strength (a) and fracture energy (b) 

 
     A second important result refers to the increase of the statistical dispersion at the smaller scales. 
This trend agrees with results from experimental investigations. Therefore, the larger scatter when 
testing small specimens should be carefully considered, especially if the final goal is to extrapolate 
strength and fracture energy values to full-size structures.  
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