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ABSTRACT
The paper is concerned in the effectiveness ofdikerete wavelet transform depending on the typé an
parameters of wavelet and depending on the typexpériment and measured response signals. Static an
dynamic response of beams and wave propagatioheatcconduction in plates is considered. The stratt
response signals were obtained from the computailated experiments accounting for measurementserro
by introduction of noise. The key problem of minimunumber of measurement points required for
successful damage identification is taken up, too.

1 INTRODUCTION
Damage detection emerged as an extremely impoetagineering problem. It has also focused
much attention in the literature in the last thidecades. This issue belongs to a class of
identification problems, where system parametees determined from experimental tests. A
profound review of damage identification techniquas presented in (Alvin [1]).
One of the modern identification tools is waveletnsform. It allows efficient analysis of non-
stationary signals and the real-time processingeler, wavelets are simultaneously localized in
time and frequency domains. This feature makes l@atransform a powerful tool in applications
to signal analysis, signal and image compressinage recognizing, signal denoising and solving
boundary value problems.
One of the first applications of wavelet transfotm damage detection was discussed in
(Wang[2]). The method of defect localization using sphktvavelets was presented in (Wang [3]),
where the authors considered beam and plate stesctwsing analytically evaluated
displacements. At the point of localized damageh@ beam a discontinuity of rotation was
assumed. In the paper (Quek [4]) the applicationdifferent wavelet functions in damage
detection structures subjected to static load vissudsed and the effects of crack characteristics
and boundary conditions were analyzed. Applicatiboontinuous wavelet transform to dynamic
discrete data for damage detection in beams wasisiied in (Gentile [5]). In (Douka [6]) an
attempt of quantitative estimation of damage degseg wavelet analysis was presented.
In the present paper the effectiveness of waveestormation in damage identification is studied
by the way of several examples with the scope tbeganformation about the recommended types
and parameters of wavelets, preferable types ofraxgnts and required measurements. We are
also interested in the effectiveness of damagdifatemn depending on a humber of measurement
points and measurement noise level.
The first part of the paper is devoted to beamctiines. We discuss the effectiveness of damage
detection for various models of damage, types tibas (static, dynamic) and measured structure
response. In the second part we study by the wagewéral numerical examples the damage
identification in plate structures. Two types ofperkiments are considered namely elastic wave
propagation and thermal fields. In the first cdseusefulness of 1D dynamic data to 2D structural
problems is studied. In the latter case stationamng non-stationary thermal problems are
considered. We focus attention on the influencebotindary conditions and manage with
undesirable disturbances in the transformed sigitad. aim of the study includes not only damage
detection but also evaluation of its degree. Tégsi¢ will be discussed in the presentation.



2 FORMULATION OF THE PROBLEM
Let us consider a structure in which a certainllefelamage is expected. Our task is to detect the
damage if its level is sufficiently large and tdieste this level. In real engineering practice,
different experimental tests can be carried outdiffdrent structural responses can be measured.
In the present study we use numerical models atstres and simulate numerically experiments.
A noise is added to the numerical structural respoto account for measurement errors. In
principle, it was assumed that we do not know #®ponse of the undamaged structure. In the
sequential subsections detailed formulations ofharical problems are presented. The structural
response signals are analyzed using discrete wavatesform DWT. Theoretical background of
this transformation was published in the literaterg. (Chui [7], Newland [8]). However, for
better understanding we provide basic informatiomdVT.
WT is a method of decomposition of arbitrary sigf@@) into an infinite sum of wavelets at
different scales according to the expansion:
f= X kzcjkw(zix—k) , (1)
| =0k =00
where W(x) is a wavelet (mother function). Integgrandk are dilation (scale) and translation
(position) indices, respectively. The tergsare numerical constants called wavelet coeffisient
Limiting the range of the independent variakleo one unit interval (here is non-dimensional)
and assuming thd¢x) is one period of a periodic signal, the wavelgiamsion can be written in
the form

f(x):aoqp(x)+2;a2, +kW(2"x—k) , (2)

where¢x) is a scaling (father) function. The coefficieatsepresent the amplitudes of subsequent
wavelets. The integerp specify different levels of wavelets. The DWT is algorithm for
computing coefficiente whenf(x) is sampled at uniformly spaced intervals o@erx < 1. Since
the number of sampled values is limited, every Wibefion f(x) is approximated usingy=2’
discrete values:

f(x)=S; +D; + Dy +..#D| +..+ D, +D; , (3)
whereD; is the signal representation at the lgvelhe termD; corresponds to the most detailed
representation of the signal (high frequency oestiidhs). The terng; is called smooth signal
representation.
Similarly, decomposition of the 2D functidx,y) has the form

J J J
f00y)=3;(xy)+ XD} (x y)+ XD} (x )+ X DP(x.y) - (4)
j=1 j=1 j=1
In Eq. (4)DY, D" and D® express vertical, horizontal and diagonal detaiges, respectively.
Each detail element at the leyak the sum of vertical, horizontal and diagonabdeslements at
the levelj:
D;(xy)=D} (x y)+ D (x y)+DP(xy) . (5)
Due to this feature, the above method of signatesgntation is called multi-resolution analysis
(MRA).

3 DAMAGE DETECTION
3.1 Beam structures

For the sake of simplicity the Bernoulli beam modeéll be used for the discussion of the
conditions which influence the effectiveness of WAT damage detection. First note that, the



experimentally measured response signal must ¢ofdaal disturbance induced by the damage.
Then, the signal vector must contain sufficientlyge number of components (measurements) to
make the DWT possible and effective. Finally, apamtype of wavelet must be used. The DWT is
capable to extract extremely small local disturlesnitom the global response signal. In principle,
only the response signal of damaged structuredd.u&/e need neither the response signal of the
undamaged structure, nor numerical models of thstsactures. However, to study the
effectiveness of DWT, numerical models of damagedctures are used for computer simulation
of the experiment.

We used FEM beam models and the damage was intddincthe form of bending stiffness
reduction at a small area or in the form of thestidshinge. The latter case was much more often
used in the literature. Let us consider two typesesponse signals: vertical displacements and
slopes. The regularity of the displacement functio@® in the case of stiffness reduction aftin

the case of the hinge. The slope function is cowtis C° and discontinuous, respectively. We
expect that the lower is the regularity at the sagdf damage, the better is the damage detection
using DWT. This expectation was confirmed by selvexamples (Knitter-Rikowska [9]). Hinge
model of damage manifests more distinctly its exise and slope signal is better, too. However,
DWT was capable to detect and localize damage fibrsignals and damage models, provided
that the level of noise was limited. To each respasignal certain critical noise level is assigned.
Haar wavelets were used in the analyses describedea This is the simplest wavelet and
therefore it was very often discussed in the ltg& It belongs to a wider class of orthogonal
wavelets. The characteristic feature of orthogevealelets is that a scaling function is orthogonal
to itself with respect to its shifting. In this g Daubechies wavelets, Symmlets and Coiflets
should be mentioned. Hitherto experience shows Bretbeschies wavelets are very useful in
damage detection. The Daubeschies wavelets areambiymsupported, have sharp edges and are
highly nonsymmetrical. It helps to expose locatutisances of the analyzed signal. However, the
support of this wavelet is larger thgd, 1]. It results in strong boundary disturbances in the
transform. This problem will be discussed more i3y during the presentation.

Planning an experiment one faces a natural quesiioih is better to use static or dynamic
structural response in damage identification prec&s answer this question a beam model with
damage defined as stiffness reduction was analyZéeé. response signals in the form of
displacements due to a concentrated force wereressurwo classes of problems were examined:
static response and harmonic steady-state vibmatidarious positions of the concentrated force
and various frequencies were analyzed. Waveletsedatidaublet 8" were used in signal
transformation. Damage detection failed for bothtis and dynamic response signals, when in the
place of damage very small strain was induced & ékperiment. This can be overcome by
variation of force position, similarly as in (Derfi0], Mr6z [11]). Similar effect can be attained
by proper modulation of the frequency of dynamiccé Basing on several numerical examples
we can conclude, that damage is detected as wefitétic as for dynamic structural responses.
However, the application of dynamic excitation pd®s more possibilities in planning the
experiment.

3.2 Two-dimensional structures

3.2.1.Wave propagation

The effects of wave reflection and deflection daddcalized damage will be used for damage
detection. The boundary displacement induced wavidsbe considered. We assume that the
structural response is measured in 1D-domain, @gnoas-section of the plate. Various response
signals will be analyzed, namely the vectors opldisements, velocities and accelerations. Since



we have no a priori information on the existencel docalization of damage, therefore in
numerical examples the measurement points wer¢eldda the font and behind assumed damage.
We will study the effectiveness of damage detechigrthe way of numerical examples using FEM model.
Let us consider a steel plate structure shown gnldi The Young modulus was assurie@®00 GPa The
rectangular 4 nodes FEM shell elements were usét,tihe number of elements 80x40 in horizontal and
vertical directions, respectively. The damage waslefed as local stiffness reductionBg=10 GPaat the
region shown in Fig. 1la. Wave excitation by disptaent of constant veloci(t)=10 m/s(in the form of the
Heaviside function) applied to the right edge of flate was assume@hree forms of damaged area
were considered: 2 horizontal FEM elements x 4icait3H x1V and 1H x 3V. Horizontal and
vertical components of acceleration and velocitgtees were subject to DWT. The wavelet called
“Doublet 4” was used. Fig. 1b presents the rexfltthe detail 1 of DWT, which corresponds to
the termDy in (3).
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Figure 1: a) plate structure with the damaged dedetail  of DWT.

It was assumed that the measurements in all palotgy vertical cross-section of the plate were
registered in the same point in time domain. Bywlag of several examples it was found that the
effectiveness of damage localization strongly depean that point of time. The best efficiency of
damage localization was when the front of the wass just passing through the line of the
measurement points. It appears that the disturlsaimcthe wave are accumulated in the front of
the wave.

The influence of the distance between the line eAsurement points and the damaged area was
examined, too. It was clearly visible, that thegtaris this distance the worse is the damage
localization. The front of the wave was of couns¢hie same position with respect to measurement
points.

3.2.2 Thermal problems

In this Chapter we will check the effectivenesslamage localization in 2-D structures basing on
heat transfer experiments. The 2-D image of temperafield can be obtained using

thermography. Since small defects or inclusionsudéed small changes in thermal structural
response, wavelet transform will be helpful. Steatdyfe heat transfer with or without convection
and transient heat transfer problems of 2D-strestuwill be considered. The model of the
thermally loaded structure is presented in Fig. 2.



Figure 2: Model of thermally loaded 2D-structure.

The governing equations for the transient heasfearproblem are:

i . (x,t)=T(x,t) on Iy
—diva(x,t)+ f =c(x)T(xt) i T )=t = i (x on ) (6)
alxt)=-Ak) T (x,1) } ? g:ﬁxg =n g = gr'l('(xt)t) -To (x,t)] on F:
T(x,0)=To(x) inQOr

whereq, f, A, T, h are heat flux vector, heat generated per unit melumaterial conductivity
matrix, temperature field and film (convection) ffagent, respectively. The dot above the symbol
denotes time derivative armx) is specific heat. On the boundary portiofis /, and 7}, the
Dirichlet, Neumann and Henkel condition are spedifirespectively. In the steady-state case the
term c(x)T(x,t) vanishes and the initial conditidifx,0) need not be specified.
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Figure 3: a) FEM model of the structure b) DWT &ileD;) of temperature field in steady-state
process without convection.

Several numerical examples with various structaemeters were analyzed using FEM. One of
representative examples is a steel plate strudliwsrated in Fig.3a. The following material
properties were assumed: thermal conducti#t§0 W/(m-K) film coefficienth=9.76 W/(r-K),
densityp=7850 kg/n, specific heat=450 J/(kg-K) The damage is modeled as local reduction of
thermal conductivity tolz=45 W/(m-K) Fig. 3a illustrates the FEM model of the struetwith
three damage zones. Fig. 3b presents DWT - detaif temperature field in steady-state problem
without convection. The wavelet called "Daubletwls used in the transform. Fig. 3b proves that



DWT satisfactorily identifies the position of daneagnd also provides information on its shape
and magnitude. The effects of convection and measent errors take the role of disturbances
spread throughout the transformed signal. Damagptifitation becomes more difficult, but in
normal conditions it is still possible. In the exalm the admissible noise level was about
#0.01°C.

5 CONCLUDING REMARKS

The effectiveness of wavelet transform in damagaetification was studied by the way of several
numerical examples. Damage in beams and platetstescwas considered. In the latter case two
types of experiments were discussed, nhamely wagpagiation and thermal problems. Wavelet
transforms 1D and 2D were implemented. The exampgkmonstrated that WT effectively
identified defects even in case of measuremenenttisvas proved that effectiveness of damage
identification strongly depends on type of wavelgructural response signal and number of
measurement points. The wavelet transform of respaignal can also be used to estimation of
damage intensity.
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