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ABSTRACT 

The paper is concerned in the effectiveness of the discrete wavelet transform depending on the type and 
parameters of wavelet and depending on the type of experiment and measured response signals. Static and 
dynamic response of beams and wave propagation and heat conduction in plates is considered. The structural 
response signals were obtained from the computer simulated experiments accounting for measurement errors 
by introduction of noise. The key problem of minimum number of measurement points required for 
successful damage identification is taken up, too. 

 
1  INTRODUCTION 

Damage detection emerged as an extremely important engineering problem. It has also focused 
much attention in the literature in the last three decades. This issue belongs to a class of 
identification problems, where system parameters are determined from experimental tests. A 
profound review of damage identification techniques was presented in (Alvin [1]). 
One of the modern identification tools is wavelet transform. It allows efficient analysis of non-
stationary signals and the real-time processing. Moreover, wavelets are simultaneously localized in 
time and frequency domains. This feature makes wavelet transform a powerful tool in applications 
to signal analysis, signal and image compression, image recognizing, signal denoising and solving 
boundary value problems.  
One of the first applications of wavelet transform to damage detection was discussed in 
(Wang [2]). The method of defect localization using spatial wavelets was presented in (Wang [3]), 
where the authors considered beam and plate structures using analytically evaluated 
displacements. At the point of localized damage in the beam a discontinuity of rotation was 
assumed. In the paper (Quek [4]) the application of different wavelet functions in damage 
detection structures subjected to static load was discussed and the effects of crack characteristics 
and boundary conditions were analyzed. Application of continuous wavelet transform to dynamic 
discrete data for damage detection in beams was discussed in (Gentile [5]). In (Douka [6]) an 
attempt of quantitative estimation of damage degree using wavelet analysis was presented.  
In the present paper the effectiveness of wavelet transformation in damage identification is studied 
by the way of several examples with the scope to gather information about the recommended types 
and parameters of wavelets, preferable types of experiments and required measurements. We are 
also interested in the effectiveness of damage localization depending on a number of measurement 
points and measurement noise level.  
The first part of the paper is devoted to beam structures. We discuss the effectiveness of damage 
detection for various models of damage, types of actions (static, dynamic) and measured structure 
response. In the second part we study by the way of several numerical examples the damage 
identification in plate structures. Two types of experiments are considered namely elastic wave 
propagation and thermal fields. In the first case the usefulness of 1D dynamic data to 2D structural 
problems is studied. In the latter case stationary and non-stationary thermal problems are 
considered. We focus attention on the influence of boundary conditions and manage with 
undesirable disturbances in the transformed signal. The aim of the study includes not only damage 
detection but also evaluation of its degree. This issue will be discussed in the presentation. 



2  FORMULATION OF THE PROBLEM  
Let us consider a structure in which a certain level of damage is expected. Our task is to detect the 
damage if its level is sufficiently large and to estimate this level. In real engineering practice, 
different experimental tests can be carried out and different structural responses can be measured. 
In the present study we use numerical models of structures and simulate numerically experiments. 
A noise is added to the numerical structural response to account for measurement errors. In 
principle, it was assumed that we do not know the response of the undamaged structure. In the 
sequential subsections detailed formulations of mechanical problems are presented. The structural 
response signals are analyzed using discrete wavelet transform DWT. Theoretical background of 
this transformation was published in the literature e.g. (Chui [7], Newland [8]). However, for 
better understanding we provide basic information on DWT. 
WT is a method of decomposition of arbitrary signal f(x) into an infinite sum of wavelets at 
different scales according to the expansion: 
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where W(x) is a wavelet (mother function). Integers j and k are dilation (scale) and translation 
(position) indices, respectively. The terms cjk are numerical constants called wavelet coefficients. 
Limiting the range of the independent variable x to one unit interval (here x is non-dimensional) 
and assuming that f(x) is one period of a periodic signal, the wavelet expansion can be written in 
the form 
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where φ(x) is a scaling (father) function. The coefficients a represent the amplitudes of subsequent 
wavelets. The integers j specify different levels of wavelets. The DWT is an algorithm for 
computing coefficients a when f(x) is sampled at uniformly spaced intervals over 0 ≤ x ≤ 1. Since 
the number of sampled values is limited, every 1D-function f(x) is approximated using N=2J 
discrete values:  
 ( ) 121 ...... DDDDDSxf jJJJ +++++++= −  , (3) 

where Dj is the signal representation at the level j. The term D1 corresponds to the most detailed 
representation of the signal (high frequency oscillations). The term SJ is called smooth signal 
representation. 
Similarly, decomposition of the 2D function f(x,y) has the form 
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In Eq. (4) DV, DH and DD express vertical, horizontal and diagonal detail images, respectively. 
Each detail element at the level j is the sum of vertical, horizontal and diagonal detail elements at 
the level j: 
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Due to this feature, the above method of signal representation is called multi-resolution analysis 
(MRA). 
 

3  DAMAGE DETECTION 
 
3.1  Beam structures 
 
For the sake of simplicity the Bernoulli beam model will be used for the discussion of the 
conditions which influence the effectiveness of WT in damage detection. First note that, the 



experimentally measured response signal must contain local disturbance induced by the damage. 
Then, the signal vector must contain sufficiently large number of components (measurements) to 
make the DWT possible and effective. Finally, a proper type of wavelet must be used. The DWT is 
capable to extract extremely small local disturbances from the global response signal. In principle, 
only the response signal of damaged structure is used. We need neither the response signal of the 
undamaged structure, nor numerical models of these structures. However, to study the 
effectiveness of DWT, numerical models of damaged structures are used for computer simulation 
of the experiment. 
We used FEM beam models and the damage was introduced in the form of bending stiffness 
reduction at a small area or in the form of the elastic hinge. The latter case was much more often 
used in the literature. Let us consider two types of response signals: vertical displacements and 
slopes. The regularity of the displacement function is C1 in the case of stiffness reduction and C0 in 
the case of the hinge. The slope function is continuous C0 and discontinuous, respectively. We 
expect that the lower is the regularity at the region of damage, the better is the damage detection 
using DWT. This expectation was confirmed by several examples (Knitter-Pi� tkowska [9]). Hinge 
model of damage manifests more distinctly its existence and slope signal is better, too. However, 
DWT was capable to detect and localize damage from all signals and damage models, provided 
that the level of noise was limited. To each response signal certain critical noise level is assigned. 
Haar wavelets were used in the analyses described above. This is the simplest wavelet and 
therefore it was very often discussed in the literature. It belongs to a wider class of orthogonal 
wavelets. The characteristic feature of orthogonal wavelets is that a scaling function is orthogonal 
to itself with respect to its shifting. In this group Daubechies wavelets, Symmlets and Coiflets 
should be mentioned. Hitherto experience shows that Daubeschies wavelets are very useful in 
damage detection. The Daubeschies wavelets are compactly supported, have sharp edges and are 
highly nonsymmetrical. It helps to expose local disturbances of the analyzed signal. However, the 
support of this wavelet is larger than [0, 1] . It results in strong boundary disturbances in the 
transform. This problem will be discussed more precisely during the presentation. 
Planning an experiment one faces a natural question, if it is better to use static or dynamic 
structural response in damage identification process. To answer this question a beam model with 
damage defined as stiffness reduction was analyzed. The response signals in the form of 
displacements due to a concentrated force were assumed. Two classes of problems were examined: 
static response and harmonic steady-state vibrations. Various positions of the concentrated force 
and various frequencies were analyzed. Wavelets named “Daublet 8” were used in signal 
transformation. Damage detection failed for both: static and dynamic response signals, when in the 
place of damage very small strain was induced in the experiment. This can be overcome by 
variation of force position, similarly as in (Dems [10], Mróz [11]). Similar effect can be attained 
by proper modulation of the frequency of dynamic force. Basing on several numerical examples 
we can conclude, that damage is detected as well for static as for dynamic structural responses. 
However, the application of dynamic excitation provides more possibilities in planning the 
experiment. 
 
3.2 Two-dimensional structures 
 
3.2.1. Wave propagation 
The effects of wave reflection and deflection due to localized damage will be used for damage 
detection. The boundary displacement induced waves will be considered. We assume that the 
structural response is measured in 1D-domain, in a cross-section of the plate. Various response 
signals will be analyzed, namely the vectors of displacements, velocities and accelerations. Since 



we have no a priori information on the existence and localization of damage, therefore in 
numerical examples the measurement points were located in the front and behind assumed damage.  
We will study the effectiveness of damage detection by the way of numerical examples using FEM model. 
Let us consider a steel plate structure shown in Fig 1a. The Young modulus was assumed E=200 GPa. The 
rectangular 4 nodes FEM shell elements were used, with the number of elements 80x40 in horizontal and 
vertical directions, respectively. The damage was modeled as local stiffness reduction to Ed=10 GPa at the 
region shown in Fig. 1a. Wave excitation by displacement of constant velocity v(t)=10 m/s (in the form of the 
Heaviside function) applied to the right edge of the plate was assumed. Three forms of damaged area 
were considered: 2 horizontal FEM elements x 4 vertical, 3H x1V and 1H x 3V. Horizontal and 
vertical components of acceleration and velocity vectors were subject to DWT. The wavelet called 
“Doublet 4” was used. Fig. 1b presents the results of the detail 1 of DWT, which corresponds to 
the term D1 in (3). 
 

 
Figure 1: a) plate structure with the damaged area, b) detail D1 of DWT. 

 
It was assumed that the measurements in all points along vertical cross-section of the plate were 
registered in the same point in time domain. By the way of several examples it was found that the 
effectiveness of damage localization strongly depends on that point of time. The best efficiency of 
damage localization was when the front of the wave was just passing through the line of the 
measurement points. It appears that the disturbances in the wave are accumulated in the front of 
the wave.  
The influence of the distance between the line of measurement points and the damaged area was 
examined, too. It was clearly visible, that the larger is this distance the worse is the damage 
localization. The front of the wave was of course in the same position with respect to measurement 
points. 
 
3.2.2 Thermal problems 
In this Chapter we will check the effectiveness of damage localization in 2-D structures basing on 
heat transfer experiments. The 2-D image of temperature field can be obtained using 
thermography. Since small defects or inclusions induce small changes in thermal structural 
response, wavelet transform will be helpful. Steady-state heat transfer with or without convection 
and transient heat transfer problems of 2D-structures will be considered. The model of the 
thermally loaded structure is presented in Fig. 2. 
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Figure 2: Model of thermally loaded 2D-structure. 

 
The governing equations for the transient heat transfer problem are: 
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where q, f, ΛΛΛΛ, T, h are heat flux vector, heat generated per unit volume, material conductivity 
matrix, temperature field and film (convection) coefficient, respectively. The dot above the symbol 
denotes time derivative and c(x) is specific heat. On the boundary portions ΓT, Γq and Γh the 
Dirichlet, Neumann and Henkel condition are specified, respectively. In the steady-state case the 
term ),()( tTc xx �  vanishes and the initial condition T(x,0) need not be specified. 

Figure 3: a) FEM model of the structure b) DWT (detail D1) of temperature field in steady-state 
 process without convection. 

 
Several numerical examples with various structure parameters were analyzed using FEM. One of 
representative examples is a steel plate structure illustrated in Fig.3a. The following material 
properties were assumed: thermal conductivity 

�
=50 W/(m·K), film coefficient h=9.76 W/(m2·K), 

density � =7850 kg/m3, specific heat c=450 J/(kg·K). The damage is modeled as local reduction of 
thermal conductivity to 

�
d=45 W/(m·K). Fig. 3a illustrates the FEM model of the structure with 

three damage zones. Fig. 3b presents DWT - detail D1 of temperature field in steady-state problem 
without convection. The wavelet called "Daublet 4" was used in the transform. Fig. 3b proves that 

a)

 

b)



DWT satisfactorily identifies the position of damage and also provides information on its shape 
and magnitude. The effects of convection and measurement errors take the role of disturbances 
spread throughout the transformed signal. Damage identification becomes more difficult, but in 
normal conditions it is still possible. In the example, the admissible noise level was about 
±0.01 ˚C. 
 

5  CONCLUDING REMARKS 

The effectiveness of wavelet transform in damage identification was studied by the way of several 
numerical examples. Damage in beams and plate structures was considered. In the latter case two 
types of experiments were discussed, namely wave propagation and thermal problems. Wavelet 
transforms 1D and 2D were implemented. The examples demonstrated that WT effectively 
identified defects even in case of measurement noise. It was proved that effectiveness of damage 
identification strongly depends on type of wavelet, structural response signal and number of 
measurement points. The wavelet transform of response signal can also be used to estimation of 
damage intensity. 
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